【題目】如圖,在矩形ABCD中,E是AD上一點,AB=8,BE=BC=10,動點P在線段BE上(與點B、E不重合),點Q在BC的延長線上,PE=CQ,PQ交EC于點F,PG∥BQ交EC于點G,設PE=x.
(1)求證:△PFG≌△QFC
(2)連結DG.當x為何值時,四邊形PGDE是菱形,請說明理由;
【答案】
(1)證明:∵BC=BE,∴∠BCE=∠PEC,
∵PG∥BQ,
∴∠BCE=∠PGE,∠Q=∠FPG,∠QCF=∠PGF,
∴∠PGE=∠PEC,
∴PE=PG,
∵PE=CQ,
∴PG=CQ,
∴△PFG≌△QFC (ASA).
(2)解:結論:當x=4時,四邊形PGDE是菱形.
理由如下:連結DG
∵四邊形ABCD是矩形,
∴AD∥BC,
AB=CD=8,AD=BC=BE=10,
在Rt△ABE中,AE= ,
∴DE=AD﹣AE=10﹣6=4,
由(1)知PG=PE=x=4,
∴PG=DE,
∵PG∥BQ,AD∥BC,
∴PG∥DE,
∴四邊形PGDE是平行四邊形,
∵PG=PE=4,
∴四邊形PGDE是菱形.
;(3)作PH⊥EC于點H.探究:
①點P在運動過程中,線段HF的長度是否發(fā)生變化?若變化,說明理由;若不變,求HF的長度;
②當x為何值時,△PHF與△BAE相似.
解:①不變化.
理由:在Rt△ABE中,CE= ,
∵PG=PE,PH⊥EC,
∴EH=HG= EG(等腰三角形“三線合一”),
∵△PFG≌△QFC,
∴CF=GF= CG,
∴HF=HG+FG= EG+ CG= CE= ,
②∵PG∥DE,
∴∠DEC=∠PGH,
在Rt△PGH中,PH=PG×sin∠PGH=x×sin∠DEC=x× =x× = ,
分兩種情況討論:
(Ⅰ)若△PHF∽△EAB,則 ,
∴ ,
∴ ,
∴當 時,△PHF∽△BAE.
(II)若△PHF∽△BAE,則 ,
∴ ,
∴ ,
∴當 或 時,△PHF與△BAE相似.
【解析】(1)只要證明PG=CQ,即可根據AAS或ASA證明;(2)結論:當x=4時,四邊形PGDE是菱形.首先證明四邊形PGDE是平行四邊形,由PG=PE=4,即可推出四邊形PGDE是菱形;(3)①不變化.可以證明:HF=HG+FG= EG+ CG= CE= ;②分兩種情形討論(Ⅰ)若△PHF∽△EAB,則 ,(II)若△PHF∽△BAE,則 ,分別列出方程即可解決問題;
【考點精析】根據題目的已知條件,利用相似三角形的應用的相關知識可以得到問題的答案,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解.
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補選一個,則錯誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某機構對2016年微信用戶的職業(yè)頒布進行了隨機抽樣調查(職業(yè)說明:A:黨政機關、軍隊,B:事業(yè)單位,C:企業(yè),D:自由職業(yè)及人體戶,E:學生,F:其他),圖1和圖2是根據調查數據繪制而成的不完整的統(tǒng)計圖.請根據圖中提供的信息,解答下列問題:
(1)該機構共抽查微信用戶人;
(2)在圖1中,補全條形統(tǒng)計圖;
(3)在圖2中,“D”用戶所對應扇形的圓心角度數為度;
(4)2016年微信用戶約有7.5億人,估計“E”用戶大約有億人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,方格圖中每個小正方形的邊長為1,點A、B、C都是格點.
(1)畫出△ABC關于直線MN對稱的△A1B1C1;
(2)直接寫出AA1的長度;
(3)如圖2,A、C是直線MN同側固定的點,D是直線MN上的一個動點,在直線MN上畫出點D,使AD+DC最。ūA糇鲌D痕跡)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次期中考試中A、B、C、D、E五位同學的數學、英語成績等有關信息如下表所示:
A | B | C | D | E | 平均分 | 標準差 | |
數學 | 71 | 72 | 69 | 68 | 70 | ||
英語 | 88 | 82 | 94 | 85 | 76 | 85 |
【1】求這五位同學在本次考試中數學成績的平均分和英語成績的標準差;
【2】為了比較不同學科考試成績的好與差,采用標準分是一個合理的選擇,標準分的計算公式是標準分=(個人成績-平均成績)÷成績標準差. 從標準分看,標準分大的考試成績更好,請問A同學在本次考試中,數學與英語哪個學科考得更好.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下圖是交警在一個路口統(tǒng)計的某個時段來往車輛的車速(單位:千米/小時)情況,則下列關于車速描述錯誤的是( )
A. 平均數是23 B. 中位數是25 C. 眾數是30 D. 方差是129
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABC的三個頂點坐標分別為A(-1,-2),B(1,1),C(-3,1),△A1B1C1是△ABC向下平移2個單位,向右平移3個單位得到的.
(1)寫出點A1、B1、C1的坐標,并在右圖中畫出△A1B1C1;
(2)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點A1 , 得∠A1;∠A1BC和∠A1CD的平分線交于點A2 , 得∠A2;…∠A2016BC和∠A20l6CD的平分線交于點A2017 , 則∠A2017=°.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com