【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD2=CACB;
(2)求證:CD是⊙O的切線;
(3)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,若BC=12,tan∠CDA=,求BE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)BE的長(zhǎng)為5.
【解析】
(1)通過(guò)相似三角形(△ADC∽△DBC)的對(duì)應(yīng)邊成比例來(lái)證得結(jié)論.
(2)如圖,連接OD.欲證明CD是⊙O的切線,只需證明CD⊥OA即可.
(3)通過(guò)相似三角形△EBC∽△ODC的對(duì)應(yīng)邊成比例列出關(guān)于BE的方程,通過(guò)解方程來(lái)求線段BE的長(zhǎng)度即可.
解:(1)證明:∵∠CDA=∠CBD,∠C=∠C,
∴△ADC∽△DBC,
∴,即CD2=CACB.
(2)證明:如圖,連接OD,
∵AB是⊙O的直徑,
∴∠ADB=90°.
∴∠1+∠3=90°.
∵OA=OD,
∴∠2=∠3.
∴∠1+∠2=90°.
又∵∠CDA=∠CBD,即∠4=∠1,
∴∠4+∠2=90°,即∠CDO=90°.
∴OD⊥OA.
又∵OA是⊙O的半徑,
∴CD是⊙O的切線.
(3)如圖,連接OE,
∵EB、CD均為⊙O的切線,
∴ED=EB,OE⊥DB.
∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°.
∴∠ABD=∠OEB.
∴∠CDA=∠OEB.
∵tan∠CDA=,
∴.
∵Rt△CDO∽R(shí)t△CBE,
∴.
∵BC=12,
∴CD=8.
在Rt△CBE中,設(shè)BE=x,
∴(x+8)2=x2+122,解得x=5.
∴BE的長(zhǎng)為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長(zhǎng)交⊙O于D點(diǎn),連接BD并延長(zhǎng)至F,使得BD=DF,連接CF、BE.
(1)求證:DB=DE;
(2)求證:直線CF為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了解全校學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)調(diào)查了部分學(xué)生一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的時(shí)間(單位:天),并用得到的數(shù)據(jù)繪制了統(tǒng)計(jì)圖(1)和圖 (2). 請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:
(1) 本次隨機(jī)調(diào)查的學(xué)生人數(shù)是_______,圖(1)中m的值是_______;
(2)求調(diào)查獲取的學(xué)生社會(huì)實(shí)踐活動(dòng)時(shí)間樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(3)該校有480名學(xué)生,根據(jù)獲取的社會(huì)實(shí)踐活動(dòng)時(shí)間樣本數(shù)據(jù),估計(jì)該校一學(xué)期社會(huì)實(shí)踐活動(dòng)時(shí)間大于10 天的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,為線段上的一個(gè)動(dòng)點(diǎn),分別以,為邊在的同側(cè)作菱形和菱形,點(diǎn),,在一條直線上,.,分別是對(duì)角線,的中點(diǎn).當(dāng)點(diǎn)在線段上移動(dòng)時(shí),點(diǎn),之間的距離最短為( )
A.B.C.4D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華和小康想用標(biāo)桿來(lái)測(cè)量河對(duì)岸的樹(shù)AB的高,兩人在確保無(wú)安全隱患的情況下,小康在F處豎立了一根標(biāo)桿EF,小華走到C處時(shí),站立在C處看到標(biāo)桿頂端E和樹(shù)的頂端B在一條直線上,此時(shí)測(cè)得小華的眼睛到地面的距離DC=16米;然后,小華在C處蹲下,小康平移標(biāo)桿到H處時(shí),小華恰好看到標(biāo)桿頂端G和樹(shù)的頂端B在一條直線上,此時(shí)測(cè)得小華的眼睛到地面的距離MC=0.8米.已知EF=GH=2.4米,CF=2米,FH=1.6米,點(diǎn)C、F、H、A在一條直線上,點(diǎn)M在CD上,CD⊥AC,EF⊥AC,CH⊥AC,AB⊥AC,根據(jù)以上測(cè)量過(guò)程及測(cè)量數(shù)據(jù),請(qǐng)你求出樹(shù)AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校積極開(kāi)展“陽(yáng)光體育”活動(dòng),并開(kāi)設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜愛(ài)哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對(duì)應(yīng)的圓心角度數(shù)為__ ;
(4)該校共有3000名學(xué)生,請(qǐng)估計(jì)全校最喜愛(ài)籃球的人數(shù)比最喜愛(ài)足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】受新型冠狀病毒疫情的影響,某市教育主管部門在推遲各級(jí)學(xué)校返校時(shí)間的同時(shí)安排各個(gè)學(xué)校開(kāi)展形式多樣的網(wǎng)絡(luò)教學(xué),學(xué)校計(jì)劃在每周三下午15:30至16:30為學(xué)生提供以下四類學(xué)習(xí)方式供學(xué)生選擇:在線閱讀、微課學(xué)習(xí)、線上答疑、在線討論,為了解學(xué)生的需求,通過(guò)網(wǎng)絡(luò)對(duì)部分學(xué)生進(jìn)行了“你對(duì)哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù);
(2)請(qǐng)求出“線上答疑”在扇形統(tǒng)計(jì)圖中的圓心角度數(shù);
(3)笑笑和瑞瑞同時(shí)參加了網(wǎng)絡(luò)學(xué)習(xí),請(qǐng)求出笑笑和瑞瑞選擇同一種學(xué)習(xí)方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,連結(jié),點(diǎn)在射線上,以為邊在上方作,作,連結(jié).
(1)當(dāng)點(diǎn)在線段上時(shí),證明:;
(2)若時(shí),求的面積;
(3)的外接圓交射線于點(diǎn),作直線交直線于點(diǎn),交直線于點(diǎn),連接,若,求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com