【題目】如圖,在以AB為直徑的半圓中,將弧BC沿弦BC折疊交AB于點(diǎn)D,若AD=5,DB=7.

(1)求BC的長(zhǎng);

(2)求圓心到BC的距離.

【答案】(1);(2)圓心到BC的距離為

【解析】1)根據(jù)折疊的性質(zhì)知:;若連接CD、AC,則∠DBC+BCD=CAD,即∠CAD=CDA;過CAB的垂線,設(shè)垂足為E,則DE=AD,由此可求出BE的長(zhǎng),進(jìn)而可在RtABC中,根據(jù)射影定理求出BC的長(zhǎng).

(2)設(shè)圓心到BC的距離為h,利用勾股定理解答即可.

1)連接CA、CD;

根據(jù)折疊的性質(zhì),得:;

∴∠CAB=CBD+BCD;

∵∠CDA=CBD+BCD(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和),

∴∠CAD=CDA,即CAD是等腰三角形;

CCEABE,則AE=DE=2.5;

BE=BD+DE=9.5;

RtACB中,CEAB,根據(jù)射影定理,得:

BC2=BEAB=9.5×12=114;

BC=

(2)設(shè)圓心到BC的距離為h,圓的半徑為r=6,

由(1)知,RtECB中,BE=9.5,BC=

,

sin=

h=,

故圓心到BC的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)F的坐標(biāo)為(0,10).點(diǎn)E的坐標(biāo)為(20,0),直線l1經(jīng)過點(diǎn)F和點(diǎn)E,直線l1與直線l2 、y=x相交于點(diǎn)P.

(1)求直線l1的表達(dá)式和點(diǎn)P的坐標(biāo);

(2)矩形ABCD的邊ABy軸的正半軸上,點(diǎn)A與點(diǎn)F重合,點(diǎn)B在線段OF上,邊AD平行于x 軸,且AB=6,AD=9,將矩形ABCD沿射線FE的方向平移,邊AD始終與x 軸平行.已知矩形ABCD以每秒個(gè)單位的速度勻速移動(dòng)(點(diǎn)A移動(dòng)到點(diǎn)E時(shí)止移動(dòng)),設(shè)移動(dòng)時(shí)間為t秒(t>0).

①矩形ABCD在移動(dòng)過程中,B、C、D三點(diǎn)中有且只有一個(gè)頂點(diǎn)落在直線l1l2上,請(qǐng)直接寫出此時(shí)t的值;

②若矩形ABCD在移動(dòng)的過程中,直線CD交直線l1于點(diǎn)N,交直線l2于點(diǎn)M.當(dāng)PMN的面積等于18時(shí),請(qǐng)直接寫出此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的三個(gè)方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一個(gè)方程有實(shí)根,則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,陰影部分是由5個(gè)小正方形組成的一個(gè)直角圖形,請(qǐng)用3種方法分別在下圖方格內(nèi)添涂黑二個(gè)小正方形,使陰影部分成為軸對(duì)稱圖形.

2)如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形中,點(diǎn)A、BC在小正方形的頂點(diǎn)上.

①在圖中畫出與△ABC關(guān)于直線l成軸對(duì)稱的△ABC;

②△ABC的面積為____________

③在直線l上找一點(diǎn)P,使PBPC的長(zhǎng)最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】CD經(jīng)過∠BCA頂點(diǎn)C的一條直線,CA=CB,EF分別是直線CD上兩點(diǎn),且∠BEC=CFA=,

1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請(qǐng)解決下面兩個(gè)問題:

①如圖1,若∠BCA=90°,=90°,則BE_____CF;EF____.(填”““=”

②如圖2,若<∠BCA180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠與∠BCA關(guān)系的條件__________,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.

2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠=BCA,請(qǐng)?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

解答下列問題:

1)如果AB=AC∠BAC=90

當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為 ,數(shù)量關(guān)系為

當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,中的結(jié)論是否仍然成立,為什么?

2)如果AB≠AC,∠BAC≠90,點(diǎn)D在線段BC上運(yùn)動(dòng).

試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)CF重合除外)?畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)

3)若AC,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A+∠B+∠C+∠D+∠E+∠F=_______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】股市一周內(nèi)周六、周日兩天不開市,股民小王上周五以每股25.20元的價(jià)格買進(jìn)某公司股票10000股,下表為本周內(nèi)每天該股票的漲跌情況:

星期

每股漲

跌情況

-0.1

+0.4

-0.2

-0.4

+0.5

注:表中正數(shù)表示股價(jià)比前一天上漲,負(fù)數(shù)表示股價(jià)比前一天下跌.

1)星期四收盤時(shí),每股多少元?

2)本周內(nèi)哪一天股價(jià)最高,是多少元?

3)股民小王本周末將該股票全部售出(不記交易稅),小王在本次交易中獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律,觀察下面算式,解答問題.

13422;

135932

13571642;

135792552

(1)請(qǐng)猜想:1357919________;

(2)請(qǐng)猜想:13579(2n1)________

(3)試計(jì)算:101103197199.

查看答案和解析>>

同步練習(xí)冊(cè)答案