【題目】A,B兩地相距200千米,甲車從A地出發(fā)勻速行駛到B地,乙車從B地出發(fā)勻速行駛到A地.乙車行駛1小時后,甲車出發(fā),兩車相向而行.設(shè)行駛時間為x小時(0≤x≤5),甲、乙兩車離A地的距離分別為y1,y2千米,y1,y2與x之間的函數(shù)關(guān)系圖象如圖1所示.根據(jù)圖象解答下列問題:
(1)求y1,y2與x的函數(shù)關(guān)系式;
(2)乙車出發(fā)幾小時后,兩車相遇?相遇時,兩車離A地多少千米?
(3)設(shè)行駛過程中,甲、乙兩車之間的距離為s千米,在圖2的直角坐標(biāo)系中,已經(jīng)畫出了s與x之間的部分函數(shù)圖象.
①圖中點(diǎn)P的坐標(biāo)為(1,m),則m= ;
②求s與x的函數(shù)關(guān)系式,并在圖2中補(bǔ)全整個過程中s與x之間的函數(shù)圖象.
【答案】(1)y1=50x﹣50,y2=﹣40x+200;(2)乙車出發(fā)小時后,兩年相遇,相遇時,兩車離A地千米;(3)①160;②當(dāng)1≤x≤時,s=250﹣90x;當(dāng)<x≤5時,s=90x﹣250;圖象詳見解析.
【解析】
(1)用待定系數(shù)法可求解析式;(2)將兩個函數(shù)表達(dá)式組成方程組可求解;(3)①由點(diǎn)P表達(dá)的意義可求m的值;②分相遇前和相遇后兩種情況分別求解析式.
解:(1)如圖1,甲的圖象過點(diǎn)(1,0),(5,200),
∴設(shè)甲的函數(shù)表達(dá)式為:y1=kx+b,
∴
解得:
∴甲的函數(shù)表達(dá)式為:y1=50x﹣50,
如圖1,乙的圖象過點(diǎn)(5,0),(0,200),
∴設(shè)乙的函數(shù)表達(dá)式為:y2=mx+200,
∴0=5m+200
∴m=﹣40,
∴乙的函數(shù)表達(dá)式為:y2=﹣40x+200,
(2)由題意可得:
解得:
答:乙車出發(fā)小時后,兩年相遇,相遇時,兩車離A地千米.
(3)①由題意可得乙先出發(fā)1小時,且速度為40千米/小時,
∴m=200﹣40×1=160,
故答案為160;
②當(dāng)1≤x≤時,s=200﹣40×1﹣(40+50)(x﹣1)=250﹣90x;
當(dāng)<x≤5時,s=90x﹣250;
圖象如下:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在玩轉(zhuǎn)盤游戲時,把兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A,B都分成3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標(biāo)上數(shù)字(如圖所示),游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,若指針?biāo)竷蓚區(qū)域的數(shù)字之和為3的倍數(shù),則甲獲勝;若指針?biāo)竷蓚區(qū)域的數(shù)字之和為4的倍數(shù),則乙獲勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.請問這個游戲?qū)、乙雙方公平嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰直角三角形中,、、分別為邊、、的中點(diǎn),點(diǎn)為斜邊所在直線上一動點(diǎn),且三角形為等腰直角三角形(,、、呈逆時針).
如圖點(diǎn)在邊上,判斷和的數(shù)量和位置關(guān)系,請直接寫出你的結(jié)論.
如圖點(diǎn)在點(diǎn)左側(cè)時;如圖,點(diǎn)在點(diǎn)右側(cè).其他條件不變,中結(jié)論是否仍然成立,并選擇圖或圖的一種情況來說明理由.
在圖中若,連接,請猜測與的數(shù)量關(guān)系,即________.(用含的三角函數(shù)的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項(xiàng)是( )
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點(diǎn)坐標(biāo)為(,m),則不等式組mx﹣2<kx+1<mx的解集為( )
A. x> B. <x< C. x< D. 0<x<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若△ABC的三邊分別為a,b,c,其中a,b滿足+(b﹣8)2=0.
(1)求邊長c的取值范圍,
(2)若△ABC是直角三角形,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地地震牽動著全國人民的心,某單位開展了“一方有難,八方支援”賑災(zāi)捐款活動.第一天收到捐款元,第三天收到捐款元.
如果第二天、第三天收到捐款的增長率相同,求捐款增長率?
按照中收到捐款的增長率不變,該單位三天一共能收到多少捐款?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA1=1,則△A8B8A9的邊長_________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com