【題目】甲、乙兩人在玩轉(zhuǎn)盤游戲時,把兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A,B都分成3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標上數(shù)字(如圖所示),游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為3的倍數(shù),則甲獲勝;若指針所指兩個區(qū)域的數(shù)字之和為4的倍數(shù),則乙獲勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.請問這個游戲?qū)、乙雙方公平嗎?說明理由.

【答案】見解析

【解析】

解:不公平,理由如下:

列表得:

1

2

3

2

1,2

2,2

3,2

3

1,3

2,3

3,3

4

1,4

2,4

3,4

由表可知共有9種等可能的結(jié)果,其中數(shù)字之和為3的倍數(shù)的有3種結(jié)果,數(shù)字之和為4的倍數(shù)的有2種,

則甲獲勝的概率為、乙獲勝的概率為,

∴這個游戲?qū)、乙雙方不公平.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將等腰直角三角形OAB放置于平面直角坐標系中,OA=AB=10,A=90°,DAB邊上的動點(不與端點A,B重合),作∠ACD=60°,交OA于點C,若點C,D都在雙曲線y=(k>0,x>0)上,則k的值為(  )

A. B. C. D. 25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑DE=12 cm,在△ABC,ACB=90°,ABC=30°,BC=12 cm.半圓O2 cm/s的速度自左向右運動在運動過程中,D,E始終在直線BC上.設運動時間為t s,t=0半圓O在△ABC的左側(cè),OC=8 cm.

(1)t=________s,半圓OAC所在直線第一次相切;點C到直線AB的距離為________.

(2)t為何值時,直線AB與半圓O所在的圓相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC是等腰三角形,AB=AC,點DE,F分別在AB,BCAC邊上,且BD=CE,BE=CF

1)求證:DEF是等腰三角形;

2)猜想:當∠A滿足什么條件時,DEF是等邊三角形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠A70°,∠B90°,點A關于BC的對稱點是A',點B關于AC的對稱點是B',點C關于AB的對稱點是C',若ABC的面積是1,則A'B'C'的面積是( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠C90°,D是邊BC上一點,連接AD,若∠BAD3CAD90°,DCa,BDb,則AB________. (用含ab的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在OAB中,OA=OB,CAB中點,以O為圓心,OC長為半徑作圓, AO與⊙O交于點E,直線OB與⊙O交于點FD,連接EF.CF,CFOA交于點G.

(1)求證:直線AB是⊙O的切線;

(2)求證:ODEG=OGEF;

(3)若AB=4BD,求sinA的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,以正方形的頂點為圓心的弧恰好與對角線相切,以頂點為圓心,正方形的邊長為半徑的弧,已知正方形的邊長為,則圖中陰影部分的面積為(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB兩地相距200千米,甲車從A地出發(fā)勻速行駛到B地,乙車從B地出發(fā)勻速行駛到A地.乙車行駛1小時后,甲車出發(fā),兩車相向而行.設行駛時間為x小時(0x5),甲、乙兩車離A地的距離分別為y1,y2千米,y1,y2x之間的函數(shù)關系圖象如圖1所示.根據(jù)圖象解答下列問題:

1)求y1,y2x的函數(shù)關系式;

2)乙車出發(fā)幾小時后,兩車相遇?相遇時,兩車離A地多少千米?

3)設行駛過程中,甲、乙兩車之間的距離為s千米,在圖2的直角坐標系中,已經(jīng)畫出了sx之間的部分函數(shù)圖象.

圖中點P的坐標為(1m),則m   ;

sx的函數(shù)關系式,并在圖2中補全整個過程中sx之間的函數(shù)圖象.

查看答案和解析>>

同步練習冊答案