【題目】根據(jù)題意解答:(1)如圖1的圖形我們把它稱(chēng)為“8字形”,請(qǐng)說(shuō)明∠A+∠B=∠C+∠D.
(2)閱讀下面的內(nèi)容,并解決后面的問(wèn)題: 如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù).
解:∵AP、CP分別平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的結(jié)論得:∠P+∠3=∠1+∠B①,∠P+∠2=∠4+∠D②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P= (∠B+∠D)=26°.
①如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請(qǐng)猜想∠P的度數(shù),并說(shuō)明理由.
②在圖4中,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫(xiě)出結(jié)論,無(wú)需說(shuō)明理由.
③在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫(xiě)出結(jié)論,無(wú)需說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)①∠P=26゜;②∠P=180°﹣(∠B+∠D);③∠P=90°+ (∠B+∠D).
【解析】試題分析:(1)根據(jù)三角形的內(nèi)角和等于180°列式整理即可得證;
(2)根據(jù)角平分線的定義可得∠1=∠2,∠3=∠4,再根據(jù)(1)的結(jié)論列出整理即可得解;①表示出∠PAD和∠PCD,再根據(jù)(1)的結(jié)論列出等式并整理即可得解;
②根據(jù)四邊形的內(nèi)角和等于360°,可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;
③根據(jù)(1)的結(jié)論∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.
試題解析:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180゜, ∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.
(2)①∠P=26゜.∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4.由(1)的結(jié)論得:∠PAD+∠P=∠PCD+∠D ①,∠PAB+∠P=∠PCB+∠B ②,∵∠PAB=∠1,∠1=∠2,∴∠PAB=∠2,∴∠2+∠P=∠3+∠B ③,①+③得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,即2∠P+180°=∠B+∠D+180°,∴∠P=(∠B+∠D )=26°.
②如圖4,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,在四邊形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,在四邊形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°﹣(∠B+∠D);
③如圖5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩地相距20 km,甲、乙兩人都從A地去B地,如圖,l1和l2分別表示甲、乙兩人所走路程s(km)與時(shí)間t(h)之間的關(guān)系,下列說(shuō)法:①乙晚出發(fā)1 h;②乙出發(fā)3 h后追上甲;③甲的速度是4 km/h;④乙先到達(dá)B地.其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).
△ACB和△DCE的頂點(diǎn)都在格點(diǎn)上,ED的延長(zhǎng)線交AB于點(diǎn)F.
(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中(∠B≠∠C),AB=8 cm,BC=16 cm,點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向點(diǎn)B以2 cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向點(diǎn)C以4 cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),經(jīng)幾秒鐘△PBQ與△ABC相似?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在3×3的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1)中有四個(gè)格點(diǎn)A,B,C,D,以其中一點(diǎn)為原點(diǎn),網(wǎng)格線所在直線為坐標(biāo)軸(水平線為橫軸),建立平面直角坐標(biāo)系,使其余三個(gè)點(diǎn)中存在兩個(gè)點(diǎn)關(guān)于一條坐標(biāo)軸對(duì)稱(chēng).
(1)原點(diǎn)是 (填字母A,B,C,D );
(2)若點(diǎn)P在3×3的正方形網(wǎng)格內(nèi)的坐標(biāo)軸上,且與四個(gè)格點(diǎn)A,B,C,D,中的兩點(diǎn)能構(gòu)成面積為1的等腰直角三角形,則點(diǎn)P的坐標(biāo)為 (寫(xiě)出可能的所有點(diǎn)P的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.從下列四個(gè)條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個(gè)為條件,余下的一個(gè)為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點(diǎn),點(diǎn)P在AB上.
(1)試找出∠1,∠2,∠3之間的關(guān)系并說(shuō)出理由;
(2)如果點(diǎn)P在A,B兩點(diǎn)之間運(yùn)動(dòng),問(wèn)∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?
(3)如果點(diǎn)P在A,B兩點(diǎn)外側(cè)運(yùn)動(dòng),試探究∠1,∠2,∠3之間的關(guān)系(點(diǎn)P和A,B不重合).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】南充某制衣廠現(xiàn)有22名制作服裝的工人,每天都制作某種品牌的襯衫和褲子,每人每天可制作這種襯衫3件或褲子5條。
(1)若該廠要求每天制作的襯衫和褲子配套,一件襯衫配兩條褲子,則應(yīng)各安排多少人分別制作襯衫和褲子?
(2)已知制作一件襯衫可獲得利潤(rùn)30元,制作一條褲子可獲得利潤(rùn)16元,在(1)的條件下,求該廠每天制作襯衫和褲子所獲得的利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD=AE2;④S△ABC=4S△ADF.其中正確的有___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com