【題目】如圖,角α的兩邊與雙曲線y=k0,x0)交于AB兩點(diǎn),在OB上取點(diǎn)C,作CDy軸于點(diǎn)D,分別交雙曲線y=、射線OA于點(diǎn)E、F,若OA=2AFOC=2CB,則的值為______

【答案】

【解析】

C,B,A,F分別作CMx軸,BNx軸,AGx軸,FHx軸,設(shè)DO2a,分別求出C,EF的坐標(biāo),即可求出的值.

如圖:過C,BA,F分別作CMx軸,BNx軸,AGx軸,FHx軸,

設(shè)DO2a,則E,2a),

BNCM

△OCM∽△OBN,

=,

BN=3a,

B,3a),

∴直線OB的解析式y=x,

C,2a),

FHAG,

△OAG∽△OFH

,

FH=OD=2a

AG=a,

Aa),

∴直線OA的解析式y=x

F,2a),

==

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,雙曲線lyx0)過點(diǎn)A(a,b),B(2,1)0a2);過點(diǎn)AACx軸,垂足為C

1)求l的解析式;

2)當(dāng)△ABC的面積為2時(shí),求點(diǎn)A的坐標(biāo);

3)點(diǎn)Pl上一段曲線AB(包括AB兩點(diǎn))的動(dòng)點(diǎn),直線l1ymx+1過點(diǎn)P;在(2)的條件下,若ymx+1具有yx增大而增大的特點(diǎn),請直接寫出m的取值范圍.(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在RtABC中,∠BAC90°,CD為∠ACB的平分線,將∠ACB沿CD所在的直線對(duì)折,使點(diǎn)B落在點(diǎn)B′處,連結(jié)AB',BB',延長CDBB'于點(diǎn)E,設(shè)∠ABC2α(0°<α<45°).

1)如圖1,若ABAC,求證:CD2BE

2)如圖2,若ABAC,試求CDBE的數(shù)量關(guān)系(用含α的式子表示);

3)如圖3,將(2)中的線段BC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角(α+45°),得到線段FC,連結(jié)EFBC于點(diǎn)O,設(shè)COE的面積為S1,△COF的面積為S2,求(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是邊AD、AB上的點(diǎn),連結(jié)OE、OF、EF.若AB=7,BC=5,∠DAB=45°,則①點(diǎn)C到直線AB的距離是_____.②△OEF周長的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A為反比例函數(shù)y(其中x0)圖象上的一點(diǎn),在x軸正半軸上有一點(diǎn)B,OB4.連接OAAB,且OAAB2

1)求k的值;

2)過點(diǎn)BBCOB,交反比例函數(shù)yx0)的圖象于點(diǎn)C

連接AC,求△ABC的面積;

在圖上連接OCAB于點(diǎn)D,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax2+bx+3a≠0)與x軸分別交于A(﹣30),B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)E(﹣1,4),對(duì)稱軸交x軸于點(diǎn)F

1)請直接寫出這條拋物線和直線AE、直線AC的解析式;

2)連接ACAE、CE,判斷△ACE的形狀,并說明理由;

3)如圖2,點(diǎn)D是拋物線上一動(dòng)點(diǎn),它的橫坐標(biāo)為m,且﹣3m<﹣1,過點(diǎn)DDKx軸于點(diǎn)K,DK分別交線段AE、AC于點(diǎn)G、H.在點(diǎn)D的運(yùn)動(dòng)過程中,

DG、GH、HK這三條線段能否相等?若相等,請求出點(diǎn)D的坐標(biāo);若不相等,請說明理由;

②在①的條件下,判斷CGAE的數(shù)量關(guān)系,并直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax2+bx+3a≠0)與x軸分別交于A(﹣3,0),B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)E(﹣1,4),對(duì)稱軸交x軸于點(diǎn)F

1)請直接寫出這條拋物線和直線AE、直線AC的解析式;

2)連接ACAE、CE,判斷△ACE的形狀,并說明理由;

3)如圖2,點(diǎn)D是拋物線上一動(dòng)點(diǎn),它的橫坐標(biāo)為m,且﹣3m<﹣1,過點(diǎn)DDKx軸于點(diǎn)KDK分別交線段AE、AC于點(diǎn)G、H.在點(diǎn)D的運(yùn)動(dòng)過程中,

DG、GH、HK這三條線段能否相等?若相等,請求出點(diǎn)D的坐標(biāo);若不相等,請說明理由;

②在①的條件下,判斷CGAE的數(shù)量關(guān)系,并直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,,點(diǎn)邊上一點(diǎn),連接,把沿折疊,使點(diǎn)落在點(diǎn)處.當(dāng)為直角三角形時(shí),的長為____

查看答案和解析>>

同步練習(xí)冊答案