【題目】已知如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn)BD是對(duì)角線,AG∥DB,交CB的延長(zhǎng)線于G,連接GF,若AD⊥BD.下列結(jié)論:①DE∥BF;②四邊形BEDF是菱形;③FG⊥AB;④S△BFG=.其中正確的是( 。
A. ①②③④ B. ①② C. ①③ D. ①②④
【答案】D
【解析】解:①∵在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),∴四邊形DEBF為平行四邊形,∴DE∥BF故①正確;
②由①知四邊形DEBF為平行四邊形,∵AD⊥BD E為邊AB的中點(diǎn),∴DE=BE=AE,∴四邊形BEDF是菱形故②正確;
③∵AG∥DB AD∥BG AD⊥BD,∴AGBD為矩形,∴AD=BG=BC,要使FG⊥AB,則BF=BC=BG,不能證明BF=BC,即FG⊥AB不恒成立,故③不正確;
④由③知BC=BG,∴S△BFG=.∵F為CD中點(diǎn),∴S△FCG=S平行四邊形ABCD,∴S△BFG=,故④正確.
故選擇D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的圖形,并且O的對(duì)應(yīng)點(diǎn)O′的坐標(biāo)為(4,3).
(1)求三角形ABO的面積;
(2)作出三角形ABO平移之后的圖形三角形A′B′O′,并寫(xiě)出A′、B′兩點(diǎn)的坐標(biāo)分別為A′ 、B′ ;
(3)P(x,y)為三角形ABO中任意一點(diǎn),則平移后對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上、向右、向下、向右的方向依次不斷地移動(dòng),每次移動(dòng)一個(gè)單位,得到點(diǎn)A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),…,那么點(diǎn)A2019的坐標(biāo)為( 。
A. (1008,1)B. (1009,1)C. (1009,0)D. (1010,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形沿對(duì)角線折疊,點(diǎn)落到點(diǎn)處,交于點(diǎn)
(1)求證:
(2)若,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,長(zhǎng)方形ABCD的邊BC平行于x軸,如果點(diǎn)A的坐標(biāo)為(-1,2),點(diǎn)C的坐標(biāo)為(3,-3),把一條長(zhǎng)為2019個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按如圖所示的逆時(shí)針?lè)较蚶@在長(zhǎng)方形ABCD的邊上,則細(xì)線的另一端所在位置的點(diǎn)的坐標(biāo)是( )
A. (-1,1)B. (-1,-1)C. (2,-2)D. (2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)同時(shí)工作2 h共收割小麥3.6hm2,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)同時(shí)工作5 h共收割小麥8 hm2.1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥多少公頃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的菱形ABCD中,BD=4,E、F分別是AD、CD上的動(dòng)點(diǎn)(包含端點(diǎn)),且AE+CF=4,連接BE、EF、FB.
(1)試探究BE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)求EF的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分線,與邊BC交于點(diǎn)F.求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】哈爾濱地鐵“二號(hào)線”正在進(jìn)行修建,現(xiàn)有大量的殘土需要運(yùn)輸.某車隊(duì)有載重量為8噸、10噸的卡車共12臺(tái),全部車輛運(yùn)輸一次可以運(yùn)輸110噸殘土.
(1)求該車隊(duì)有載重量8噸、10噸的卡車各多少輛?
(2)隨著工程的進(jìn)展,該車隊(duì)需要一次運(yùn)輸殘土不低于165噸,為了完成任務(wù),該車隊(duì)準(zhǔn)備再新購(gòu)進(jìn)這兩種卡車共6輛,則最多購(gòu)進(jìn)載重量為8噸的卡車多少輛?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com