【題目】如圖,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于點(diǎn)D,在線段AD上任取一點(diǎn)P(點(diǎn)A除外),過點(diǎn)P作EF∥AB,分別交AC,BC于點(diǎn)E和點(diǎn)F,作PQ∥AC,交AB于點(diǎn)Q,連接QE.
(1)求證:四邊形AEPQ為菱形;
(2)當(dāng)點(diǎn)P在何處時(shí),菱形AEPQ的面積為四邊形EFBQ面積的一半?

【答案】
(1)證明:∵EF∥AB,PQ∥AC,

∴四邊形AEPQ為平行四邊形,

∴∠BAD=∠EPA,

∵AB=AC,AD平分∠CAB,

∴∠CAD=∠BAD,

∴∠CAD=∠EPA,

∴EA=EP,

∴四邊形AEPQ為菱形.


(2)解:P為EF中點(diǎn)時(shí),S菱形AEPQ= S四邊形EFBQ

∵四邊形AEPQ為菱形,

∴AD⊥EQ,

∵AB=AC,AD平分∠BAC,

∴AD⊥BC,

∴EQ∥BC,

又∵EF∥AB,

∴四邊形EFBQ為平行四邊形.

作EN⊥AB于N,如圖所示:

則S菱形AEPQ=EPEN= EFEN= S四邊形EFBQ


【解析】(1)先證出四邊形AEPQ為平行四邊形,關(guān)鍵是找一組鄰邊相等,由AD平分∠BAC和PE∥AQ可證∠EAP=∠EPA,得出AE=EP,即可得出結(jié)論;(2)S菱形AEPQ=EPh,S平行四邊形EFBQ=EFh,若菱形AEPQ的面積為四邊形EFBQ面積的一半,則EP= EF,因此P為EF中點(diǎn)時(shí),S菱形AEPQ= S四邊形EFBQ

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,點(diǎn)E,F(xiàn)在對角線BD上,且BE=DF,求證:
(1)AE=CF;
(2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)y=kx-1k≠0)在第一象限的圖象交于A1,n)和B兩點(diǎn).

1)求反比例函數(shù)的解析式與點(diǎn)B坐標(biāo);

2)求AOB的面積;

3)在第一象限內(nèi),當(dāng)一次函數(shù)y=﹣x+5的值小于反比例函數(shù)y=kx-1k≠0)的值時(shí),寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ab、c△ABC的三邊,且a2c2﹣b2c2=a4﹣b4,則此三角形的形狀為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的位置如圖(每個(gè)小正方形的邊長均為1).

(1)請畫出△ABC沿x軸向右平移3個(gè)單位長度,再沿y軸向上平移2個(gè)單位長度后的△A′B′C′(其中A′、B′、C′分別是A、B、C的對應(yīng)點(diǎn),不寫畫法).
(2)直接寫出A′、B′、C′三點(diǎn)的坐標(biāo):
A′( , ); B′();
C′().
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:

(1)已知AB∥CD,EF∥MN,∠1=115°,求∠2和∠4的度數(shù);
(2)本題隱含著一個(gè)規(guī)律,請你根據(jù)(1)的結(jié)果進(jìn)行歸納,試著用文字表述出來;
(3)利用(2)的結(jié)論解答:如果兩個(gè)角的兩邊分別平行,其中一角是另一個(gè)角的兩倍,求這兩個(gè)角的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥DE,∠ABC=70,∠CDE=140,則∠BCD的值為( )

A.70
B.50
C.40
D.30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 (2016湖北鄂州第14題)如圖,已知直線 與x軸、y軸相交于P、Q兩點(diǎn),與y=的圖像相交于A(-2,m)、B(1,n)兩點(diǎn),連接OA、OB. 給出下列結(jié)論: k1k2<0;m+n=0; SAOP= SBOQ不等式k1x+b>的解集是x<-2或0<x<1,其中正確的結(jié)論的序號是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度數(shù).有同學(xué)用了下面的方法.但由于一時(shí)犯急沒有寫完整,請你幫他添寫完整. 解:∵AD∥CB( 已知
∴∠C+∠ADC=180° (
又∵∠A=∠C (
∴∠A+∠ADC=180° (
∴AB∥CD (
∴∠BDC=∠ABD=32° ().

查看答案和解析>>

同步練習(xí)冊答案