【題目】把下列各數(shù)填入相應(yīng)的大括號內(nèi).
3,-,,0.5,2π,3.14159265,-,1.103030030003…(相
鄰兩個3之間依次多1個0).
(1) 有理數(shù)集合:{ };
(2) 無理數(shù)集合:{ };
(3) 實數(shù)集合:{ };
(4) 負(fù)實數(shù)集合:{ }.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把a、b兩個數(shù)中較小的數(shù)記作min{a,b},直線y=kx﹣k﹣2(k<0)與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個交點,則k的取值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:
(1)EH=FH;
(2)∠CAB=2∠CDH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=6,∠DBC=30°,DM平分∠BDC交BC于M,△EFG中,∠F=90°,GF= ,∠E=30°,點F、G、B、C共線,且G、B重合,△EFG沿折線B﹣M﹣D方向以每秒 個單位長度平移,得到△E1F1G1 , 平移過程中,點G1始終在折線B﹣M﹣D上,△E1F1G1與△DBM無重疊時,△E1F1G1停止運動,設(shè)△E1F1G1與△DBM重疊部分面積為S,平移時間為t,
(1)當(dāng)△E1F1G1的頂點G1恰好在BD上時,t=秒;
(2)直接寫出S與t的函數(shù)關(guān)系式,及自變量t的取值范圍;
(3)如圖2,△E1F1G1平移到G1與M重合時,將△E1F1G1繞點M旋轉(zhuǎn)α°(0°<α<180°)得到△E2F2G1 , 點E1、F1分別對應(yīng)E2、F2 , 設(shè)直線F2E2與直線DM交于P,與直線DC交于Q,是否存在這樣的α,使△DPQ為直角三角形?若存在,求α的度數(shù)和DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于點D,則S△ADC的值是( )
A. 10 B. 8 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=12cm,BC=8cm.點E、F、G分別從點A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向移動.點E、G的速度均為2cm/s,點F的速度為4cm/s,當(dāng)點F追上點G(即點F與點G重合)時,三個點隨之停止移動.設(shè)移動開始后第t秒時,△EFG的面積為S(cm2)
(1)當(dāng)t=1秒時,S的值是多少?
(2)寫出S和t之間的函數(shù)解析式,并指出自變量t的取值范圍;
(3)若點F在矩形的邊BC上移動,當(dāng)t為何值時,以點E、B、F為頂點的三角形與以點F、C、G為頂點的三角形相似?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示).回答下列問題:
(1)設(shè)這個苗圃園垂直于墻的一邊的長為x米,則平行于墻的一邊長為;(用含x的代數(shù)式表示)
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2+bx+c(a≠0)的圖象與函數(shù)y=x﹣ 的圖象如圖所示,則下列結(jié)論:①ab>0;②c>﹣ ;③a+b+c<﹣ ;④方程ax2+(b﹣1)x+c+ =0有兩個不相等的實數(shù)根.其中正確的有( )
A.4 個
B.3 個
C.2 個
D.1 個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com