【題目】如圖所示,△ABC中,∠C=90°,BC=8cm,AC:AB=3:5,點(diǎn)P從點(diǎn)B出發(fā)沿BC向點(diǎn)C以2cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿CA向點(diǎn)A以1cm/s的速度移動(dòng),如果P、Q分別從B、C同時(shí)出發(fā):
(1)經(jīng)過(guò)多少秒后,△CPQ的面積為8cm?
(2)經(jīng)過(guò)多少秒時(shí),以C、P、Q為頂點(diǎn)的三角形恰與△ABC相似?
【答案】(1)不論經(jīng)過(guò)多少秒后,△CPQ的面積都不能為8cm2;(2)2.4秒或秒
【解析】
(1)設(shè)AC=3x,AB=5x,根據(jù)勾股定理列出方程即可求出AC和AB,設(shè)經(jīng)過(guò)t秒后,△CPQ的面積為8cm2,然后用t表示出PC和CQ,根據(jù)三角形的面積列方程即可求出結(jié)論;
(2)設(shè)經(jīng)過(guò)x秒時(shí),以C、P、Q為頂點(diǎn)的三角形恰與△ABC相似,根據(jù)有兩組對(duì)應(yīng)邊成比例及其夾角相等的兩個(gè)三角形相似,列出比例式,即可求出結(jié)論.
解:設(shè)AC=3x,AB=5x,由勾股定理得:AB2=AC2+BC2,
∴(3x)2+82=(5x)2,
解得:x=2,
∴AC=6,AB=10,
設(shè)經(jīng)過(guò)t秒后,△CPQ的面積為8cm2, PC=8-2t,CQ=t,
PC×CQ=8即×(8-2t)×t=8
解得:此方程無(wú)解,
答:不論經(jīng)過(guò)多少秒后,△CPQ的面積都不能為8cm2.
(2)解:設(shè)經(jīng)過(guò)x秒時(shí),以C、P、Q為頂點(diǎn)的三角形恰與△ABC相似,
∵∠C=∠C=90°,
∴要使以C、P、Q為頂點(diǎn)的三角形恰與△ABC相似,具備或=就行,代入得:或,
解得:x=或x=,
答:經(jīng)過(guò)秒或秒時(shí),以C、P、Q為頂點(diǎn)的三角形恰與△ABC相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿(mǎn)足不等式的實(shí)數(shù)的所有取值的全體叫做閉區(qū)間,表示為.對(duì)于一個(gè)函數(shù),如果它的自變量與函數(shù)值滿(mǎn)足:當(dāng)時(shí),有,我們就稱(chēng)此函數(shù)是閉區(qū)間上的“閉函數(shù)”.如函數(shù),當(dāng)時(shí),;當(dāng)時(shí),,即當(dāng)時(shí),有,所以說(shuō)函數(shù)是閉區(qū)間上的“閉函數(shù)”
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;
(2)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求的值;
(3)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的表達(dá)式(可用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)小組同時(shí)從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米.第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達(dá)乙地.設(shè)第二組的步行速度為千米/小時(shí),根據(jù)題意可列方程________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn),在反比例函數(shù)的圖象上,軸于點(diǎn),軸于點(diǎn),.
(1)求,的值和反比例函數(shù)的解析式;
(2)連接,是線段上一點(diǎn),過(guò)點(diǎn)作軸的垂線,交反比例函數(shù)圖象于點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),已知,兩點(diǎn)的坐標(biāo)分別為,
(1)求拋物線的表達(dá)式;
(2)一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿線段以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)為何值時(shí)以、、為頂點(diǎn)的三角形與相似?
(3)若點(diǎn)是軸上一動(dòng)點(diǎn),點(diǎn)是拋物線上一動(dòng)點(diǎn),試判斷是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形.若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,將線段AC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到線段CD,旋轉(zhuǎn)角為α.
(1)如圖,∠BAC=90°,α=45°,試求點(diǎn)D到邊AB,AC的距離的比值;
(2)如圖,∠BAC=100°,α=20°,連接AD,BD,求∠CBD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖 1,在平行四邊形中,點(diǎn)是對(duì)角線 的中點(diǎn),過(guò)點(diǎn)的直線分別交于點(diǎn)若平行四邊形 的面積是 8,則四邊形 的面積是___________ .
(2)如圖 2,在菱形中,對(duì)角線相交于點(diǎn) O,過(guò)點(diǎn) O 的直線分別交于點(diǎn),若,求四邊形 的面積.
(3)如圖 3,在中,,延長(zhǎng)到點(diǎn),使,連結(jié),若 ,則 的面積是____________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結(jié)論正確的是( )
A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長(zhǎng)=六邊形GHIJKL的周長(zhǎng) D. S六邊形ABCDEF=2S六邊形GHIJKL
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的對(duì)角線相交于點(diǎn),,.
(1)求證:四邊形是菱形;
(2)若,菱形的面積為,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com