【題目】兩個小組同時從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米.第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達乙地.設第二組的步行速度為千米/小時,根據(jù)題意可列方程________

【答案】

【解析】

根據(jù)第二組的速度可得出第一組的速度,依據(jù)“時間=路程÷速度”即可找出第一、二組分別到達的時間,再根據(jù)第一組比第二組早15分鐘(小時)到達乙地即可列出分式方程,由此即可得出結論.

解:設第二組的步行速度為x千米/小時,則第一組的步行速度為1.2x千米/小時,

第一組到達乙地的時間為:7.5÷1.2x;

第二組到達乙地的時間為:7.5÷x;

∵第一組比第二組早15分鐘(小時)到達乙地,

∴列出方程為:

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段 AB 經過⊙O 的圓心, AC , BD 分別與⊙O 相切于點 C D .若 AC =BD = 4 ,∠A=45°,則弧CD的長度為(

A.πB.2πC.2πD.4π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線yx22mx+m21y軸交于點C

1)試用含m的代數(shù)式表示拋物線的頂點坐標;

2)將拋物線yx22mx+m21沿直線y=﹣1翻折,得到的新拋物線與y軸交于點D.若m0,CD8,求m的值;

3)已知A2k0),B0k),在(2)的條件下,當線段AB與拋物線yx22mx+m21只有一個公共點時,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形中,分別是上的點,且,則有結論成立;

如圖2,在四邊形中,分別是上的點,且的一半, 那么結論是否仍然成立?若成立,請證明;不成立,請說明理由.

若將中的條件改為:如圖3,在四邊形中,,延長到點,延長到點,使得仍然是的一半,則結論是否仍然成立?若成立,請證明;不成立,請寫出它們的數(shù)量關系并證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綠色無公害蔬菜基地有甲、乙兩種植戶,他們種植了兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:

種植戶

種植類蔬菜面積(單位:畝)

種植類蔬菜面積(單位:畝)

總收入(單位:元)

說明:不同種植戶種植的同類蔬菜每畝的平均收入相等;畝為土地面積單位

兩類蔬菜每畝的平均收入各是多少元?

某種植戶準備租畝地用來種植兩類蔬菜,為了使總收入不低于元且種植類蔬菜的面積多于種植類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案;

的基礎上,指出哪種方案使總收入最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線ykx+b(k0),經過點(60),且與坐標軸圍成的三角形的面積是9,與函數(shù)y(x0)的圖象G交于AB兩點.

(1)求直線的表達式;

(2)橫、縱坐標都是整數(shù)的點叫作整點.記圖象G在點A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)W

m2時,直接寫出區(qū)域W內的整點的坐標   ;

若區(qū)域W內恰有3個整數(shù)點,結合函數(shù)圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線與反比例函數(shù)的圖象交于、兩點,,則的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC中,∠C=90°BC=8cm,ACAB=35,點P從點B出發(fā)沿BC向點C2cm/s的速度移動,點Q從點C出發(fā)沿CA向點A1cm/s的速度移動,如果P、Q分別從BC同時出發(fā):

1)經過多少秒后,CPQ的面積為8cm?

2)經過多少秒時,以CP、Q為頂點的三角形恰與ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017江西。┤鐖D1,研究發(fā)現(xiàn),科學使用電腦時,望向熒光屏幕畫面的視線角”α約為20°,而當手指接觸鍵盤時,肘部形成的手肘角”β約為100°.圖2是其側面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學使用電腦時,求眼睛與屏幕的最短距離AB的長;

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結果精確到個位)

查看答案和解析>>

同步練習冊答案