【題目】小明家門前有一條小河,村里準備在河面上架上一座橋,但河寬AB無法直接測量,愛動腦的小明想到了如下方法:在與AB垂直的岸邊BF上取兩點C、D使CD=   ,再引出BF的垂線DG,在DG上取一點E,并使A、C、E在一條直線上,這時測出線段   的長度就是AB的長.

(1)按小明的想法填寫題目中的空格;

(2)請完成推理過程.

【答案】(1)CB; DE;(2)證明見解析;

【解析】

(1)根據(jù)全等三角形的性質(zhì)進行填空,構(gòu)造全等三角形即可;(2)首先證明△ABC≌△EDC,進而可根據(jù)全等三角形對應(yīng)邊相等可得DE=AB.

(1)在與AB垂直的岸邊BF上取兩點C、D使CD=CB,再引出BF的垂線DG,DG上取一點E,并使A、C、E在一條直線上,這時測出線段 DE的長度就是AB的長.

故答案為:CB; DE;

(2)由題意得,∵DGBF,

∴∠CDE=90°

在△ABC和△EDC

∴△ABC≌△EDC(ASA)

DE=AB(全等三角形的對應(yīng)邊相等).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為調(diào)查市民上班時最常用的交通工具的情況,隨機抽取了四市部分市民進行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動車,C:公交車,D:家庭轎車,E:其他五個選項中選擇最常用的一項將所有調(diào)查結(jié)果整理后繪制成不完整的條形統(tǒng)計圖1)和扇形統(tǒng)計圖(圖2),請結(jié)合統(tǒng)計圖回答下列問題:

(1)在這次調(diào)查中,一共調(diào)查了 名市民;

(2)扇形統(tǒng)計圖中,C組的百分率是 ;并補全條形統(tǒng)計圖;

(3)計算四市中10000名市民上班時最常用家庭轎車的有多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四個完全相同的小球上分別標上1,2,3,4四個數(shù)字,然后裝入一個不透明的口袋里攪勻,小明同學隨機摸取一個小球記下標號,然后放回,再隨機摸取一個小球,記下標號.
(1)請你用畫樹狀圖或列表的方法分別表示小明同學摸球的所有可能出現(xiàn)的結(jié)果.
(2)按照小明同學的摸球方法,把第一次取出的小球的數(shù)字作為點M的橫坐標,把第二次取出的小球的數(shù)字作為點M的縱坐標,試求出點M(x,y)落在直線y=x上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求兩個正整數(shù)的最大公約數(shù)是常見的數(shù)學問題,中國古代數(shù)學專著《九章算術(shù)》中便記載了求兩個正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之數(shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說,要求兩個正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當減數(shù)與差相等時,此時的差(或減數(shù))即為這兩個正整數(shù)的最大公約數(shù).
例如:求91與56的最大公約數(shù)
解:
請用以上方法解決下列問題:

(1)求108與45的最大公約數(shù);
(2)求三個數(shù)78、104、143的最大公約數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=C=90°,AB=AD,AEBC,垂足為E,若線段AE=3,則四邊形ABCD的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①b<0,c>0;②a+b+c<0;③方程的兩根之和大于0;④a﹣b+c<0,其中正確的個數(shù)是(

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知 BF=CE,∠B=∠E,那么添加下列一個條件后,仍無法判定△ABC≌△DEF的是( )

A. AB=DE B. AC∥DF C. ∠A=∠D D. AC=DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,現(xiàn)有一個面積為150平方米的長方形養(yǎng)雞場,雞場的一邊靠墻(墻長18米),另三邊用竹籬笆圍成,在與墻平行的一邊,開一扇2米寬的門.如果竹籬笆的長為33米,求這個長方形養(yǎng)雞場與墻垂直的邊長是多少?與墻平行的邊長是多少?(列方程解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠A=60°,平分線BE、CF相交于O,求證:OE=OF.

查看答案和解析>>

同步練習冊答案