【題目】求兩個正整數(shù)的最大公約數(shù)是常見的數(shù)學(xué)問題,中國古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說,要求兩個正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時,此時的差(或減數(shù))即為這兩個正整數(shù)的最大公約數(shù).
例如:求91與56的最大公約數(shù)
解:
請用以上方法解決下列問題:

(1)求108與45的最大公約數(shù);
(2)求三個數(shù)78、104、143的最大公約數(shù).

【答案】
(1)解:108﹣45=63,

63﹣45=18,

27﹣18=9,

18﹣9=9,

所以108與45的最大公約數(shù)是9


(2)解:先求104與78的最大公約數(shù),

104﹣78=26,

78﹣26=52,

52﹣26=26,

所以104與78的最大公約數(shù)是26;

再求26與143的最大公約數(shù),

143﹣26=117,

117﹣26=91,

91﹣26=65,

65﹣26=39,

39﹣26=13,

26﹣13=13,

所以,26與143的最大公約數(shù)是13,

∴78、104、143的最大公約數(shù)是13


【解析】(1)根據(jù)題目,首先弄懂題意,然后根據(jù)例子寫出答案即可;(2)可以先求出104與78的最大公約數(shù)為 26,再利用輾轉(zhuǎn)相除法,我們可以求出26 與 143的最大公約數(shù)為13,進而得到答案.本題考查的知識點是輾轉(zhuǎn)相除法與更相減損術(shù),求三個或三個以上數(shù)的最大公約數(shù),可以先求前兩個數(shù)的最大公約數(shù),再求所得最大公約數(shù)與第三個數(shù)的最大公約數(shù)最后得到答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的周長是16,OB、OC分別平分∠ABC∠ACB,OD⊥BCDOD=2,△ABC的面積是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點F,過FDEBC,交AB于點D,交AC于點E.若BD=4,DE=7,則線段EC的長為( 。

A. 3 B. 4 C. 3.5 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,小明購買一種筆記本所付款金額y(元)與購買量x(本)之間的函數(shù)圖象由線段OB和射線BE組成,則一次購買8個筆記本比分8次購買每次購買1個可節(jié)省元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在紙上畫了四個點,如果把這四個點彼此連接,連成一個圖形,則這個圖形中會有_____個三角形出現(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家門前有一條小河,村里準備在河面上架上一座橋,但河寬AB無法直接測量,愛動腦的小明想到了如下方法:在與AB垂直的岸邊BF上取兩點C、D使CD=   ,再引出BF的垂線DG,在DG上取一點E,并使A、C、E在一條直線上,這時測出線段   的長度就是AB的長.

(1)按小明的想法填寫題目中的空格;

(2)請完成推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)家們對于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨特的貢獻和地位,體現(xiàn)了數(shù)學(xué)研究中的繼承和發(fā)展.現(xiàn)用4個全等的直角三角形拼成如圖所示“弦圖”.RtABC中,∠ACB=90°,若,請你利用這個圖形解決下列問題:

(1)試說明;

(2)如果大正方形的面積是10,小正方形的面積是2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEABE,DFACF,若BD=CD,BE=CF.

(1)求證:AD平分∠BAC;

(2)猜想寫出AB+ACAE之間的數(shù)量關(guān)系并給予證明.

查看答案和解析>>

同步練習(xí)冊答案