【題目】下列結(jié)論:①若,則關(guān)于x的方程 ax-b+c=0(a的解是x=-1;②若x=1是方程ax+b+c=1a的解,則a+b+c=1成立;③若,則;④A、B、C是平面內(nèi)的三個(gè)點(diǎn),ABAC是兩條線段,若AB=AC,則點(diǎn)C為線段AB的中點(diǎn);⑤若,則的值為0。其中正確結(jié)論的個(gè)數(shù)是(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

【答案】C

【解析】

①求出b=2a,c=3a,然后代入方程求解即可;②根據(jù)方程解的定義代入即可;③根據(jù)題意可得a=b,且a,b≠0,然后代入計(jì)算即可;④根據(jù)線段中點(diǎn)的定義判斷即可;⑤首先求出zy0,xz0yx0,然后利用絕對(duì)值的性質(zhì)化簡.

解:①∵,

b=2a,c=3a

∴關(guān)于x的方程 ax-b+c=0可變形為:ax-2a+3a=0(a≠0),

解得:x=1,故①正確;

②將x=1代入ax+b+c=1得:a+b+c=1,故②正確;

③∵,

a=b,且a,b≠0,

,故③正確;

④若AB、C在同一條直線上,則點(diǎn)A為線段BC的中點(diǎn),故④錯(cuò)誤;

⑤∵,

zy0xz0yx0,

,故⑤正確,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個(gè)幾何體的小正方體的個(gè)數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠AOC65°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE90°)

1)如圖,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   

2)如圖,將直角三角板DOE繞點(diǎn)O順時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠AOE,求∠COD的度數(shù);

3)如圖,將直角三角板DOE繞點(diǎn)O任意轉(zhuǎn)動(dòng),如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱36元,每月可銷售60箱.市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價(jià)x(x為正整數(shù)),每月的銷量為y箱.

1)寫出yx中間的函數(shù)關(guān)系式和自變量的取值范圍;

2)超市如何定價(jià),才能使每月銷售牛奶的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線與雙曲線交于、兩點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn),已知點(diǎn)、點(diǎn)

1)求直線和雙曲線的解析式;

2)將沿直線翻折,點(diǎn)落在第一象限內(nèi)的點(diǎn)處,直接寫出點(diǎn)的坐標(biāo);

3)如圖2,過點(diǎn)作直線軸的負(fù)半軸于點(diǎn),連接軸于點(diǎn),且的面積與的面積相等.

①求直線的解析式;

②在直線上是否存在點(diǎn),使得?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線ABx軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=3,AB=5.點(diǎn)P從點(diǎn)O出發(fā)沿OA以每秒1個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后立刻以原來的速度沿AO返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng).伴隨著P、Q的運(yùn)動(dòng),DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB﹣BO﹣OP于點(diǎn)E.點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t0).

(1)求直線AB的解析式;

(2)在點(diǎn)POA運(yùn)動(dòng)的過程中,求△APQ的面積St之間的函數(shù)關(guān)系式(不必寫出t的取值范圍);

(3)在點(diǎn)EBO運(yùn)動(dòng)的過程中,完成下面問題:

①四邊形QBED能否成為直角梯形?若能,請(qǐng)求出t的值;若不能,請(qǐng)說明理由;

②當(dāng)DE經(jīng)過點(diǎn)O時(shí),請(qǐng)你直接寫出t的值.

【答案】(1)直線AB的解析式為;(2)S=﹣t2+t;

(3)四邊形QBED能成為直角梯形.①t=②當(dāng)DE經(jīng)過點(diǎn)O時(shí),t=

【解析】分析:(1)首先由在RtAOB,OA=3,AB=5,求得OB的值,然后利用待定系數(shù)法即可求得一次函數(shù)的解析式;
(2)過點(diǎn)QQFAO于點(diǎn)F.由△AQF∽△ABO,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,借助于方程即可求得QF的長,然后即可求得的面積St之間的函數(shù)關(guān)系式;
(3)①分別從DEQBPQBO去分析,借助于相似三角形的性質(zhì),即可求得t的值;
②根據(jù)題意可知即時(shí),則列方程即可求得t的值.

詳解:(1)RtAOB,OA=3,AB=5,由勾股定理得

A(3,0),B(0,4).

設(shè)直線AB的解析式為y=kx+b.

.解得

∴直線AB的解析式為

(2)如圖1,過點(diǎn)QQFAO于點(diǎn)F.

AQ=OP=t,AP=3t.

由△AQF∽△ABO,

(3)四邊形QBED能成為直角梯形,

①如圖2,當(dāng)DEQB時(shí),

DEPQ,

PQQB,四邊形QBED是直角梯形.

此時(shí)

由△APQ∽△ABO,

解得

如圖3,當(dāng)PQBO時(shí),

DEPQ,

DEBO,四邊形QBED是直角梯形.

此時(shí)

由△AQP∽△ABO,

3t=5(3t),

3t=155t,

8t=15,

解得

(當(dāng)PA0運(yùn)動(dòng)的過程中還有兩個(gè),但不合題意舍去).

②當(dāng)DE經(jīng)過點(diǎn)O時(shí),

DE垂直平分PQ,

EP=EQ=t,

由于PQ相同的時(shí)間和速度,

AQ=EQ=EP=t,

∴∠AEQ=EAQ,

∴∠BEQ=EBQ,

BQ=EQ,

所以

當(dāng)PAO運(yùn)動(dòng)時(shí),

過點(diǎn)QQFOBF

EP=6t,

EQ=EP=6t,

AQ=t,BQ=5t,

解得:

∴當(dāng)DE經(jīng)過點(diǎn)O時(shí), .

點(diǎn)睛:本題考查知識(shí)點(diǎn)較多,勾股定理,待定系數(shù)法求一次函數(shù)解析式,相似三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握和運(yùn)用各個(gè)知識(shí)點(diǎn)是解題的關(guān)鍵.

型】解答
結(jié)束】
21

【題目】如圖,反比例函數(shù)y(m0)與一次函數(shù)y=kx+b(k0)的圖象相交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(-6,2),點(diǎn)B的坐標(biāo)為(3,n).求反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

(1)求y與x之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入﹣成本),并指出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點(diǎn),若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.

解決此問題可以用如下方法:延長AE交DC的延長線于點(diǎn)F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個(gè)三角形中即可判斷.

AB、AD、DC之間的等量關(guān)系為   ;

(2)問題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長線交于點(diǎn)F,E是BC的中點(diǎn),若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.

(3)問題解決:如圖③,AB∥CF,AE與BC交于點(diǎn)E,BE:EC=2:3,點(diǎn)D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為 BC上的點(diǎn),F(xiàn)為 CD邊上的點(diǎn),且AE=AF,AB=4,設(shè)EC=x,△AEF 的面積為y,則yx之間的函數(shù)關(guān)系式是____.

查看答案和解析>>

同步練習(xí)冊(cè)答案