【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn),點(diǎn),且、滿足.

1)求,的值;

2)以為邊作,點(diǎn)在直線的右側(cè)且,求點(diǎn)的坐標(biāo);

3)若(2)的點(diǎn)在第四象限(如圖2),交于點(diǎn),軸交于點(diǎn),連接,過(guò)點(diǎn)軸于點(diǎn).

①求證;

②直接寫出點(diǎn)的距離.

【答案】1;(2;(3)①見(jiàn)解析,②

【解析】

1)將等式變形后,利用非負(fù)數(shù)的性質(zhì)即可得到a,b的值;

2)由題意分兩種情況討論,當(dāng)時(shí),過(guò)點(diǎn),利用AAS,從而求得點(diǎn)C的坐標(biāo);當(dāng)時(shí),同理可得解;

3)①過(guò)點(diǎn)軸于點(diǎn),依次證得,即可得證;

②過(guò)點(diǎn)C分別作x軸、DL的垂線,交于點(diǎn)KH,通過(guò)證明△EDC≌△FDC得到∠DEC =LEC,再利用角平分線的性質(zhì)定理得到CH=CL=1.

.解:(1

,

,

,

,;

2)由(1)知,

,

,

是直角三角形,且,

只有,

、當(dāng)時(shí),如圖,

,

過(guò)點(diǎn),

,

,

中,

,

,

,

、當(dāng)時(shí),如圖

的方法得,

即:滿足條件的點(diǎn)

3)①如圖,由(2)知點(diǎn),

過(guò)點(diǎn)軸于點(diǎn),則

中,

,

,

,

,

中,

,

,

CH=,

如圖,過(guò)點(diǎn)C分別作x軸、y軸、DE的垂線,交于點(diǎn)K、L、H,

由①可知,CL=CK=1
ECL+DCK=LCK-ECD=90°-45°=45°,
FCK+KCD=ECF-ECD=90°-45°=45°
∴∠ECL=FCK,又∠FKC=ELC=90°,
∴△ELC≌△FKCAAS),
∴∠LEC=KFC,EC=FC
FCD=FCK+KCD=ECL+KCD=45°=ECD,
CD=CD,
∴△EDC≌△FDCSAS),
∴∠DEC=DFC,
∴∠DEC =LEC

CH=CL=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長(zhǎng)MF為0.5米,量得電線桿AB落在地上的影子BD長(zhǎng)3米,落在墻上的影子CD的高為2米.你能利用小明測(cè)量的數(shù)據(jù)算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊三角形ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長(zhǎng)是9.其中,正確結(jié)論的個(gè)數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩塊斜邊長(zhǎng)相等的等腰直角三角板按如圖①擺放,斜邊AB分別交CD,CE于M,N點(diǎn).

(1)如果把圖①中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,連接FM如圖②,求證:△CMF≌△CMN;

(2)將△CED繞點(diǎn)C旋轉(zhuǎn),則:

當(dāng)點(diǎn)M,N在AB上(不與點(diǎn)A,B重合)時(shí),線段AM,MN,NB之間有一個(gè)不變的關(guān)系式,請(qǐng)你寫出這個(gè)關(guān)系式,并說(shuō)明理由;

當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長(zhǎng)線上(如圖③)時(shí),①中的關(guān)系式是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張康和李健兩名運(yùn)動(dòng)愛(ài)好者周末相約到丹江環(huán)庫(kù)綠道進(jìn)行跑步鍛煉.

1)周日早上點(diǎn),張康和李健同時(shí)從家出發(fā),分別騎自行車和步行到離家距離分別為千米和千米的綠道環(huán)庫(kù)路入口匯合,結(jié)果同時(shí)到達(dá),且張康每分鐘比李健每分鐘多行米,求張康和李健的速度分別是多少米分?

2)兩人到達(dá)綠道后約定先跑千米再休息,李健的跑步速度是張康跑步速度的倍,兩人在同起點(diǎn),同時(shí)出發(fā),結(jié)果李健先到目的地分鐘.

①當(dāng),時(shí),求李健跑了多少分鐘?

②求張康的跑步速度多少米分?(直接用含,的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)安裝有進(jìn)出水管的30升容器,水管單位時(shí)間內(nèi)進(jìn)出的水量是一定的,設(shè)從

某時(shí)刻開(kāi)始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,得到水量y(升)

與時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信息給出下列說(shuō)法:

①每分鐘進(jìn)水5升;②當(dāng)4≤x≤12時(shí),容器中水量在減少;

③若12分鐘后只放水,不進(jìn)水,還要8分鐘可以把水放完;

④若從一開(kāi)始進(jìn)出水管同時(shí)打開(kāi)需要24分鐘可以將容器灌滿.

以上說(shuō)法中正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=ACAO=AD,∠BAC=∠OAD=90°,點(diǎn)O是△ABC內(nèi)的一點(diǎn),BOC=130°.

(1)求證:OB=DC;

(2)求DCO的大小;

(3)設(shè)AOB=α,那么當(dāng)α為多少度時(shí),△COD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,內(nèi)一點(diǎn),且,,則等于(

A. 105° B. 120° C. 135° D. 150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,, ,, .

(1)三點(diǎn)在同一直線上,連接于點(diǎn),求證: .

(2)在第(1)問(wèn)的條件下,求證: ;

(3)繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到圖2,那么第(2)問(wèn)中的結(jié)論是否依然成立?若成立,請(qǐng)證明你的結(jié)論:若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案