【題目】為了解某次“小學(xué)生書(shū)法比賽”的成績(jī)情況,隨機(jī)抽取了30名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)情況繪成如圖所示的頻數(shù)分布直方圖,己知成績(jī)x(單位:分)均滿足“50≤x<100”,每組成績(jī)包含最小值,不包含最大值.根據(jù)圖中信息回答下列問(wèn)題:
(1)圖中a的值為_(kāi)____;若要繪制該樣本的扇形統(tǒng)計(jì)圖,則成績(jī)x在“70≤x<80”所對(duì)應(yīng)扇形的圓心角度數(shù)為_(kāi)_________;
(2)此次比賽共有300名學(xué)生參加,若將“x≥80”的成績(jī)記為“優(yōu)秀”,則獲得“優(yōu)秀“的學(xué)生大約有多少人?
(3)在這些抽查的樣本中,小明的成績(jī)?yōu)?/span>92分,若從成績(jī)?cè)凇?/span>50≤x<60”和“90≤x<100”的學(xué)生中任選2人,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求小明被選中的概率.
【答案】(1)6,144°;(2)100人;(3)見(jiàn)解析,.
【解析】
(1)用總?cè)藬?shù)減去其他分組的人數(shù)即可求得60x<70的人數(shù)a;用360乘以成績(jī)?cè)?/span>70≤x<80的人數(shù)所占比例可得;
(2)用總?cè)藬?shù)乘以樣本中優(yōu)秀人數(shù)所占比例即可得;
(3)先畫(huà)出樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),再找出有C的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)a=30-(2+12+8+2)=6;成績(jī)?cè)凇?/span>70≤x<80所對(duì)應(yīng)扇形的圓心角度數(shù)為360°× =144°;故答案為:6,144;
(2)獲得“優(yōu)秀“的學(xué)生大約有300× =100人,故答案為:100人;
(3)50≤x<60的兩名同學(xué)用A、B表示,90≤x<100的兩名同學(xué)用C(小明)、D表示,畫(huà)樹(shù)狀圖如下:
由樹(shù)狀圖知共有12種等可能結(jié)果,其中小明被選中的結(jié)果數(shù)為6,
∴小明被選中的概率為=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自習(xí)課上小明在準(zhǔn)備完成題目:化簡(jiǎn):( x2+6x+8)-(6x+8x2+2)發(fā)現(xiàn)系數(shù)“ ” 印刷不清楚、
(1)他把“ ”猜成6,請(qǐng)你幫小明完成化簡(jiǎn):(6x2+6x+8)-(6x+8x2+2);
(2)小明同桌看到他化簡(jiǎn)的結(jié)果說(shuō):“你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù)。”請(qǐng)你通過(guò)計(jì)算說(shuō)明原題中“ ”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知Rt△ABC中,∠ACB=90°,AC=8,AB=10,點(diǎn)D是AC邊上一點(diǎn)(不與C重合),以AD為直徑作⊙O,過(guò)C作CE切⊙O于E,交AB于F.
(1)若⊙O半徑為2,求線段CE的長(zhǎng);
(2)若AF=BF,求⊙O的半徑;
(3)如圖②,若CE=CB,點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)為點(diǎn)G,試求G、E兩點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中, AB為直徑, C 為上一點(diǎn)。
(1)如圖 1. 過(guò)點(diǎn) C 作 O 的切線 , 與 AB 的延長(zhǎng)線相交于點(diǎn) P, 若 ∠CAB=27°,求 ∠P 的大。
(2)如圖 2,D 為上一點(diǎn) , 且 OD 經(jīng)過(guò) AC 的中點(diǎn) E, 連接 DC 并延長(zhǎng) , 與 AB 的延長(zhǎng)線相交于點(diǎn) P, 若 ∠CAB=10°,求 ∠P 的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某果園有棵橘子樹(shù),平均每一棵樹(shù)結(jié)個(gè)橘子.根據(jù)經(jīng)驗(yàn)估計(jì),每多種棵樹(shù),平均每棵樹(shù)就會(huì)少結(jié)個(gè)橘子.設(shè)果園增種棵橘子樹(shù),果園橘子總個(gè)數(shù)為個(gè).
(1)根據(jù)題意,填寫(xiě)下表:
增種的橘子樹(shù)(棵) | … | |||||
平均每棵樹(shù)結(jié)橘子數(shù)(個(gè)) |
(2)求果園里增種多少棵橘子樹(shù)時(shí),所結(jié)橘子總數(shù)最多,并求出此時(shí)橘子的總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過(guò)原點(diǎn),與x軸交于另一點(diǎn)A,對(duì)稱軸x=-2交x軸于點(diǎn)C,直線l過(guò)點(diǎn)N(0,-2),且與x軸平行,過(guò)點(diǎn)P作PM⊥l于點(diǎn)M,△AOB的面積為2.
(1)求拋物線的解析式;
(2)當(dāng)∠MPN=∠BAC時(shí),求P點(diǎn)坐標(biāo);
(3)①求證PM=PC;
②若點(diǎn)Q坐標(biāo)為(0,2),直接寫(xiě)出PQ+PC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與坐標(biāo)軸交于A,B兩點(diǎn),在射線AO上有一點(diǎn)P,當(dāng)△APB是以AP為腰的等腰三角形時(shí),點(diǎn)P的坐標(biāo)是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】公司年使用自主研發(fā)生產(chǎn)的“”系列甲、乙、丙三類芯片共萬(wàn)塊,生產(chǎn)了萬(wàn)部手機(jī),其中乙類芯片的產(chǎn)量是甲類芯片的倍,丙類芯片的產(chǎn)量比甲、乙兩類芯片產(chǎn)量的和還多萬(wàn)塊.這些“”芯片解決了該公司年生產(chǎn)的全部手機(jī)所需芯片的.
(1)求年甲類芯片的產(chǎn)量;
(2)公司計(jì)劃年生產(chǎn)的手機(jī)全部使用自主研發(fā)的“”系列芯片.從年起逐年擴(kuò)大“”芯片的產(chǎn)量,年、年這兩年,甲類芯片每年的產(chǎn)量都比前一年增長(zhǎng)一個(gè)相同的百分?jǐn)?shù),乙類芯片的產(chǎn)量平均每年增長(zhǎng)的百分?jǐn)?shù)比小,丙類芯片的產(chǎn)量每年按相同的數(shù)量遞增.年到年,丙類芯片三年的總產(chǎn)量達(dá)到億塊.這樣,年的公司的手機(jī)產(chǎn)量比年全年的手機(jī)產(chǎn)量多,求丙類芯片年的產(chǎn)量及的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的弦AD∥BC,過(guò)點(diǎn)D的切線交BC的延長(zhǎng)線于點(diǎn)E,AC∥DE交BD于點(diǎn)H,DO及延長(zhǎng)線分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com