【題目】拋物線y=ax2+bx+4A(1,﹣1),B(5,﹣1),與y軸交于點C.
(1)求拋物線的函數表達式;
(2)如圖1,連接CB,若點P在直線BC上方的拋物線上,△BCP的面積為15,求點P的坐標;
(3)如圖2,⊙O1過點A、B、C三點,AE為直徑,點M為弧ACE上的一動點(不與點A,E重合),∠MBN為直角,邊BN與ME的延長線交于N,求線段BN長度的最大值.
【答案】
(1)解:將點A、B的坐標代入拋物線的解析式得: ,
解得: .
∴拋物線得解析式為y=x2﹣6x+4
(2)解:如圖所示:
設點P的坐標為P(m,m2﹣6m+4)
∵S△CBP=15,即:S△CBP=S梯形CEDP﹣S△CEB﹣S△PBD,
∴ m(5+m2﹣6m+4+1)﹣ ×5×5﹣ (m﹣5)(m2﹣6m+5)=15,
化簡得:m2﹣5m﹣6=0,
解得:m=6,或m=﹣1,
∴點P的坐標為(6,4)或(﹣1,11)
(3)解:連接AB、EB,
∵AE是圓的直徑,
∴∠ABE=90°,
∴∠ABE=∠MBN,
又∵∠EAB=∠EMB,
∴△EAB∽△NMB,
∵A(1,﹣1),B(5,﹣1),
∴點O1的橫坐標為3,
將x=0代入拋物線的解析式得:y=4,
∴點C的坐標為(0,4),
設點O1的坐標為(3,m),
∵O1C=O1A,
∵OC=4,O1到OC的距離=3,
∴⊙O1的半徑= ,
∴ = ,
解得:m=2,
∴點O1的坐標為(3,2),
∴O1A= ,
在Rt△ABE中,由勾股定理得:BE= = =6,
∴點E的坐標為(5,5),
∴AB=4,BE=6,
∵△EAB∽△NMB,
∴ = ,
∴ = ,
∴NB= BM,
∴當MB為直徑時,MB最大,此時NB最大,
∴MB=AE=2 ,
∴NB= ×2 =3
【解析】(1)將點A、B的坐標代入拋物線的解析式,得到關于a、b的方程,從而可求得a、b的值;(2)設點P的坐標為P(m,m2﹣6m+4),根據S△CBP=15,由S△CBP=S梯形CEDP﹣S△CEB﹣S△PBD , 得到關于m的方程求得m的值,從而可求得點P的坐標;(3)首先證明△EAB∽△NMB,從而可得到NB= ,當MB為圓的直徑時,NB有最大值.
科目:初中數學 來源: 題型:
【題目】2012年6月5日是“世界環(huán)境日”,南寧市某校舉行了“綠色家園”演講比賽,賽后整理參賽同學的成績,制作成直方圖(如圖).
(1)分數段在范圍的人數最多;
(2)全校共有多少人參加比賽?
(3)學校決定選派本次比賽成績最好的3人參加南寧市中學生環(huán)保演講決賽,并為參賽選手準備了紅、藍、白顏色的上衣各1件和2條白色、1條藍色的褲子.請用“列表法”或“樹形圖法”表示上衣和褲子搭配的所有可能出現的結果,并求出上衣和能搭配成同一種顏色的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋中裝有紅、白兩種顏色的小球(除顏色外其余都相同),其中紅球3個,白球1個.
(1)求任意摸出一球是白球的概率;
(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用畫樹狀圖或列表的方法求兩次摸出都是紅球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形紙片ABCD置于直角坐標系中,點A(4,0),點B(0,3),點D(異于點B、C)為邊BC上動點,過點O、D折疊紙片,得點B′和折痕OD.過點D再次折疊紙片,使點C落在直線DB′上,得點C′和折痕DE,連接OE,設BD=t.
(1)當t=1時,求點E的坐標;
(2)設S四邊形OECB=s,用含t的式子表示s(要求寫出t的取值范圍);
(3)當OE取最小值時,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB為邊,在△OAB外作等邊△OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在邊長為5的菱形ABCD中,cos∠BAD= ,點E是射線AB上的點,作EF⊥AB,交AC于點F.
(1)求菱形ABCD的面積;
(2)求證:AE=2EF;
(3)如圖2,過點F,E,B作⊙O,連結DF,若⊙O與△CDF的邊所在直線相切,求所有滿足條件的AE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB和CD交于點O,OE⊥AB,垂足為點O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC與∠COE的度數;
(2)求∠BOP的度數.
【答案】(1)∠AOC=36°,∠COE=54°,(2)∠BOP=27°.
【解析】
(1)由鄰補角定義,可求得得∠AOC度數,由垂直定義,可得∠AOE=∠BOE=90°,由余角定義可求得∠COE;
(2)由鄰補角定義可得∠DOE度數,由OO平分∠DOE,可得∠EOP度數,再由余角定義可求得∠BOP度數.
(1)∵∠AOC+∠AOD=180°,∠AOD=144°,
∴∠AOC=180°-∠AOD=180°-144°=36°,
∵OE⊥AB,
∴∠AOE=∠BOE=90°,
∴∠COE=∠AOE-∠AOC=90°-36°=54°,
(2)∵∠COE+∠DOE=180°,
∴∠DOE=180°-∠COE=180°-54°=126°,
∵OO平分∠DOE,
∴∠EOP=∠DOE=×126°=63°,
∴∠BOP=∠BOE-∠EOP=90°-63°=27°.
【點睛】
本題考查了對頂角、鄰補角以及垂線的性質,是基礎知識要熟練掌握.
【題型】解答題
【結束】
27
【題目】如表為某市居民每月用水收費標準,(單位:元/m3).
用水量 | 單價 |
0<x≤20 | a |
剩余部分 | a+1.1 |
(1)某用戶1月用水10立方米,共交水費26元,則a= 元/m3;
(2)在(1)的條件下,若該用戶2月用水25立方米,則需交水費 元;
(3)在(1)的條件下,若該用戶水表3月份出了故障,只有70%的用水量記入水表中,該用戶3月份交了水費81.6元.請問該用戶實際用水多少立方米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一段街道的兩邊緣所在直線分別為AB, PQ,并且AB∥PQ.建筑物的一端DE所在的直線MN⊥AB于點M,交PQ于點N,步行街寬MN為13.4米,建筑物寬DE為6米,光明巷寬EN為2.4米.小亮在勝利街的A處,測得此時AM為12米,求此時小亮距建筑物拐角D處有多遠?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com