【題目】如圖,正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展開后折痕DE分別交AB、AC于點E、G,連結GF,給出下列結論:
①∠ADG=22.5°;②tan∠AED=2;③SAGD=SOGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若SOGF=1,則正方形ABCD的面積是6+4
其中正確有

【答案】①④⑤
【解析】解:∵四邊形ABCD是正方形,
∴∠GAD=∠ADO=45°,
由折疊的性質可得:∠ADG= ∠ADO=22.5°,故①正確.
∵由折疊的性質可得:AE=EF,∠EFD=∠EAD=90°,
∴AE=EF<BE,
∴AE< AB,
>2,
在Rt△ADE中,tan∠AED= >2,故②錯誤.
∵∠AOB=90°,
∴AG=FG>OG,△AGD與△OGD同高,
∴SAGD>SOGD , 故③錯誤.
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE,
∵∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF,
∵AE=EF,
∴AE=GF,
∵AE=EF=GF,AG=GF,
∴AE=EF=GF=AG,
∴四邊形AEFG是菱形,故④正確.
∴∠OGF=∠OAB=45°,
∴EF=GF= OG,
∴BE= EF= × OG=2OG.故⑤正確.
∵四邊形AEFG是菱形,
∴AB∥GF,AB=GF.
∵∠BAO=45°,∠GOF=90°,
∴△OGF時等腰直角三角形.
∵SOGF=1,
OG2=1,解得OG= ,
∴BE=2OG=2 ,GF= ═2,
∴AE=GF=2,
∴AB=BE+AE=2 +2,
∴S正方形ABCD=AB2=(2 +2)2=12+8 ,故⑥錯誤.
∴其中正確結論的序號是:①④⑤共三個.
所以答案是①④⑤.
【考點精析】利用平行線的性質和等腰三角形的性質對題目進行判斷即可得到答案,需要熟知兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補;等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的不等式x﹣1.

(1)當m=1時,求該不等式的解集;

(2)m取何值時,該不等式有解,并求出解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面內,已點A3,0)、B(-5,3),將點A向左平移6個單位到達C,將點B向下平移6個單位到達D

1)寫出C點、D點的坐標C __________,D ____________ ;

2)把這些點按ABCDA順次連接起來這個圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P,下列說法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正確的個數(shù)有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=4,BC=3,經過點C且與邊AB相切的動圓與CA、CB分別相交于點P、Q,則線段PQ長度的最小值是(
A.4.75
B.4.8
C.5
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D為等邊△ABC的邊AC上一點,E為直線AB上一點,CD=BE.

(1)如圖1,求證;AD=DE;

(2)如圖2,DE交CB于點P.

①若DE⊥AC,PC=6,求BP的長;

②猜想PD與PE之間的數(shù)量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足為E.

(1)求證:DA=DE;

(2)若AD=2,BC=6,求AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一艘輪船在小島A的北偏東60°距小島80海里的B處,沿正西方向航行2小時后到達小島的北偏西45°的C處,則該船行駛的速度為海里/小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

同步練習冊答案