【題目】如圖,在Rt△ABC中,∠C=90°,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△A′B′C,M、M′分別是AB、A′B′的中點,若AC=8,BC=6,則線段MM′的長為____.
【答案】
【解析】
先利用勾股定理求出AB的長,根據(jù)直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)求出CM=AB,然后連接CM、CM′,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠MCM′=90°,CM=CM′,再利用勾股定理列式求解即可.
連接CM,CM′,
∵AC=8,BC=6,
∴AB= =10,
∵M是AB的中點,
∴CM=AB=5,
∵Rt△ABC繞點C順時針旋轉(zhuǎn)90°得到Rt△A′B′C,
∴∠A′CM′=∠ACM
∵∠ACM+∠MCB=90°,
∴∠MCB+∠BCM′=90°,
又∵CM=C′M′,
∴△CMM′是等腰直角三角形,
∴MM′=CM=5,
故答案為:5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點坐標(biāo)為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)將△ABC繞坐標(biāo)原點O旋轉(zhuǎn)180°,畫出圖形,并寫出點A的對應(yīng)點A′的坐標(biāo)_____;
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,直接寫出點A的對應(yīng)點A″的坐標(biāo)_____;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的所有可能的坐標(biāo)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生態(tài)示范村種植基地計劃用90畝~120畝的土地種植一批葡萄,原計劃總產(chǎn)量要達(dá)到36萬斤.
(1)列出原計劃種植畝數(shù)y(畝)與平均每畝產(chǎn)量x(萬斤)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)為了滿足市場需求,現(xiàn)決定改良葡萄品種.改良后平均每畝產(chǎn)量是原計劃的1.5倍,總產(chǎn)量比原計劃增加了9萬斤,種植畝數(shù)減少了20畝,原計劃和改良后的平均每畝產(chǎn)量各是多少萬斤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
(3)求彈珠離開軌道時的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD,AB∥CD,點E是BC延長線上一點,連接AC、AE,AE交CD于點F,∠1=∠2,∠3=∠4.
證明:
(1)∠BAE=∠DAC;
(2)∠3=∠BAE;
(3)AD∥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(1,2),則點A1,C1的坐標(biāo)分別是 ( )
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)
C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(10,0),B(4,8),C(0,8),連接AB,BC,點P在x軸上,從原點O出發(fā),以每秒1個單位長度的速度向點A運動,同時點M從點A出發(fā),以每秒2個單位長度的速度沿折線A﹣B﹣C向點C運動,其中一點到達(dá)終點時,另一點也隨之停止運動,設(shè)P,M兩點運動的時間為t秒.
(1)求AB長;
(2)設(shè)△PAM的面積為S,當(dāng)0≤t≤5時,求S與t的函數(shù)關(guān)系式,并指出S取最大值時,點P的位置;
(3)t為何值時,△APM為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結(jié)OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9,
(1)求證:△COD∽△CBE;
(2)求半圓O的半徑的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生參加體育活動的情況,學(xué)校對學(xué)生進(jìn)行隨機抽樣調(diào)查,其中一個問題是“你平均每天參加體育活動的時間是多少”,共有4個選項:A、1.5小時以上;B、1~1.5小時;C、0.5~1小時;D、0.5小時以下.圖1、2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)本次一共調(diào)查了多少名學(xué)生?
(2)在圖1中將選項B的部分補充完整;
(3)若該校有3000名學(xué)生,你估計全校可能有多少名學(xué)生平均每天參加體育活動的時間在0.5小時以下?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com