【題目】如圖,拋物線y=﹣x2+bx+c交x軸于A,B兩點(diǎn),并經(jīng)過(guò)點(diǎn)C,已知點(diǎn)A的坐標(biāo)是(﹣6,0),點(diǎn)C的坐標(biāo)是(﹣8,﹣6).
(1)求拋物線的解析式;
(2)求拋物線的頂點(diǎn)坐標(biāo)及點(diǎn)B的坐標(biāo);
(3)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)D,連接CD,并延長(zhǎng)CD交拋物線于點(diǎn)E,連接AC,AE,求△ACE的面積;
(4)拋物線上有一個(gè)動(dòng)點(diǎn)M,與A,B兩點(diǎn)構(gòu)成△ABM,是否存在S△ADM=S△ACD?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)拋物線解析式為y=﹣x2﹣4x﹣6;
(2)B(﹣2,0);
(3)S△ACE= 7.5;
(4)點(diǎn)M的坐標(biāo)為(﹣3,)或(﹣5,)或(﹣4+,﹣)或(﹣4﹣,﹣)時(shí),S△ADM=S△ACD.
【解析】試題分析:(1)利用待定系數(shù)法進(jìn)行求解即可得;
(2)化為頂點(diǎn)式即可得到頂點(diǎn)坐標(biāo),令y=0,解方程即可得;
(3)求出直線CE的解析式,然后求出與x軸的交點(diǎn)坐標(biāo),利用S△ACE=S△ADE+S△ACD進(jìn)行計(jì)算即可得;
(4)設(shè)M(x,﹣x2﹣4x﹣6),根據(jù)S△ABM=S△ACD,通過(guò)計(jì)算即可得.
試題解析:(1)根據(jù)題意得,解得,
所以拋物線解析式為y=﹣x2﹣4x﹣6;
(2)y=﹣(x+4)2+2,則拋物線的頂點(diǎn)坐標(biāo)為(﹣4,2);
當(dāng)y=0時(shí),﹣x2﹣4x﹣6=0,解得x1=﹣6, x2=﹣2,則B(﹣2,0);
(3)設(shè)直線CD的解析式為y=mx+n,
把D(﹣4,0),C(﹣8,﹣6)代入得,解得,
所以直線CD的解析式為y=x+6,
解方程組 得 或,則E(﹣3,),
所以S△ACE=S△ADE+S△ACD=×2×+×2×6=7.5;
(4)存在.
設(shè)M(x,﹣x2﹣4x﹣6),
∵S△ABM=S△ACD,
∴×4|﹣x2﹣4x﹣6|=××2×3,
當(dāng)﹣x2﹣4x﹣6=,解得x1=﹣3,x2=﹣5,此時(shí)M點(diǎn)坐標(biāo)(﹣3,)或(﹣5,);
當(dāng)﹣x2﹣4x﹣6=﹣,解得x1=﹣4+,x2=﹣4﹣,此時(shí)M點(diǎn)坐標(biāo)(﹣4+,﹣)或(﹣4﹣,﹣),
綜上所述,點(diǎn)M的坐標(biāo)為(﹣3,)或(﹣5,)或(﹣4+,﹣)或(﹣4﹣,﹣)時(shí),S△ADM=S△ACD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某工程隊(duì)準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測(cè)量山坡的坡度,即tanα的值.測(cè)量員在山坡P處(不計(jì)此人身高)觀察對(duì)面山頂上的一座鐵塔,測(cè)得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點(diǎn)O、B、C、A、P在同一平面內(nèi).
求:
(1)P到OC的距離.
(2)山坡的坡度tanα.
(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果店以每箱60元新進(jìn)一批蘋果共400箱,為計(jì)算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過(guò)10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱重記錄如下:
(1)求30箱蘋果的總重量
(2)若每千克蘋果的售價(jià)為10元,則賣完這批蘋果共獲利多少元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張長(zhǎng)10cm,寬8cm的長(zhǎng)方形硬紙板的四周各剪去一個(gè)同樣大小的正方形,再折合成一個(gè)無(wú)蓋的長(zhǎng)方體盒子(紙板的厚度忽略不計(jì)).
(1)要使無(wú)蓋長(zhǎng)方體盒子的底面積為48cm2,那么剪去的正方形的邊長(zhǎng)為多少?
(2)如果把長(zhǎng)方形硬紙板的四周分別剪去2個(gè)同樣大小的正方形和2個(gè)同樣形狀、同樣大小的長(zhǎng)方形,然后折合成一個(gè)有蓋的長(zhǎng)方體盒子,那么它的側(cè)面積(指的是高為剪去的正方形邊長(zhǎng)的長(zhǎng)方體的側(cè)面積)可以達(dá)到30cm2嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù)的圖象與x軸交于點(diǎn)A,一次函數(shù)的圖象分別與x軸、y軸交于點(diǎn)B,C,且與的圖象交于點(diǎn)D(m,4).
(1)求m,b的值;
(2)△ACD的面積是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿軸做如下移動(dòng),第一次點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn),第二次將點(diǎn)向右移動(dòng)6個(gè)單位長(zhǎng)度到達(dá)點(diǎn),第三次將點(diǎn)向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn),按照這種移動(dòng)規(guī)律移動(dòng)下去,第次移動(dòng)到點(diǎn),如果點(diǎn)與原點(diǎn)的距離不小于20,那么的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:若A、B、C為數(shù)軸上三點(diǎn),若點(diǎn)C到A的距離是點(diǎn)C到B的距離2倍,我們就稱點(diǎn)C是(A,B)的好點(diǎn).
例如,如圖1,點(diǎn)A表示的數(shù)為-1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是(A,B)的好點(diǎn);
又如,表示0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D就不是(A,B)的好點(diǎn),但點(diǎn)D是(B,A)的好點(diǎn).
知識(shí)運(yùn)用:如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為-2,點(diǎn)N所表示的數(shù)為4.
(1)數(shù)_______________________ 所表示的點(diǎn)是(M,N)的好點(diǎn);
(2)數(shù)________________________ 所表示的點(diǎn)是(N,M)的好點(diǎn);
(溫馨提示:注意考慮M,N的左側(cè)、右側(cè),不要漏掉答案)
(3)如圖(3)A,B為數(shù)軸上的兩點(diǎn),點(diǎn)A所表示的數(shù)為-20,點(diǎn)B表示的數(shù)為 40,現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以2單位每秒的速度一直向左運(yùn)動(dòng),
①當(dāng)t為何值時(shí),P是(A,B)的好點(diǎn)?
②當(dāng)t為何值時(shí),P是(B,A)的好點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【探索發(fā)現(xiàn)】
如圖①,是一張直角三角形紙片,∠B=90°,小明想從中剪出一個(gè)以∠B為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過(guò)證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為 .
【拓展應(yīng)用】
如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數(shù)式表示)
【靈活應(yīng)用】
如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個(gè)面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.
【實(shí)際應(yīng)用】
如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com