如圖,已知AB是⊙O的直徑,BC是⊙O的弦,弦ED⊥AB于點(diǎn)F,交BC于點(diǎn)G,過點(diǎn)C的直線與ED的延長線交于點(diǎn)P,PC=PG.
(1)求證:PC是⊙O的切線;
(2)當(dāng)點(diǎn)C在劣弧AD上運(yùn)動(dòng)時(shí),其他條件不變,若BG2=BF•BO.求證:點(diǎn)G是BC的中點(diǎn);
(3)在滿足(2)的條件下,AB=10,ED=4,求BG的長.
(1)證明:連OC,如圖,
∵ED⊥AB,
∴∠FBG+∠FGB=90°,
又∵PC=PG,
∴∠1=∠2,
而∠2=∠FGB,∠4=∠FBG,
∴∠1+∠4=90°,即OC⊥PC,
∴PC是⊙O的切線;
(2)證明:連OG,如圖,
∵BG2=BF•BO,即BG:BO=BF:BG,
而∠FBG=∠GBO,
∴△BGO∽△BFG,
∴∠OGB=∠BFG=90°,
即OG⊥BG,
∴BG=CG,即點(diǎn)G是BC的中點(diǎn);
(3)解:連OE,如圖,
∵ED⊥AB,
∴FE=FD,
而AB=10,ED=4,
∴EF=2,OE=5,
在Rt△OEF中,OF===1,
∴BF=5﹣1=4,
∵BG2=BF•BO,
∴BG2=BF•BO=4×5,
∴BG=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體的側(cè)面積為( 。
| A. | 2πcm2 | B. | 4πcm2 | C. | 8πcm2 | D. | 16πcm2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A,B,C,D四支足球隊(duì)分在同一小組進(jìn)行單循環(huán)足球比賽,爭(zhēng)奪出線權(quán),比賽規(guī)則規(guī)定:勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分,小組中積分最高的兩個(gè)隊(duì)(有且只有兩個(gè)隊(duì))出線,小組賽結(jié)束后,如果A隊(duì)沒有全勝,那么A隊(duì)的積分至少要幾分才能保證一定出線?請(qǐng)說明理由.
[注:?jiǎn)窝h(huán)比賽就是小組內(nèi)的每一個(gè)隊(duì)都要和其他隊(duì)賽一場(chǎng)].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列各運(yùn)算中,計(jì)算正確的是( 。
A.4a2﹣2a2=2 B. (a2)3=a5 C. a3•a6=a9 D. (3a)2=6a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A在y軸正半軸上,頂點(diǎn)B在x軸正半軸上,OA、OB的長分別是一元二次方程x2﹣7x+12=0的兩個(gè)根(OA>OB).
(1)求點(diǎn)D的坐標(biāo).
(2)求直線BC的解析式.
(3)在直線BC上是否存在點(diǎn)P,使△PCD為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖(六),O為△ABC的外心,△OCP為正三角形,與相交于D點(diǎn),連接。若ÐBAC=70°,=,則ÐADP的度數(shù)為何?
(A) 85 (B) 90 (C) 95 (D) 110
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com