【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元
(1) 求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2) 商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn)
【答案】(1) 甲種商品每件的進(jìn)價(jià)為30元,乙種商品為70元;(2) 購(gòu)進(jìn)甲種商品80件,則購(gòu)進(jìn)乙種商品20件時(shí)獲利最大,為1200元.
【解析】試題分析:(1) 設(shè)甲種商品每件的進(jìn)價(jià)為x元,乙種商品每件的進(jìn)價(jià)為y元,根據(jù)題意列出方程組解出答案即可;(2) 設(shè)該商場(chǎng)購(gòu)進(jìn)甲種商品m件,則購(gòu)進(jìn)乙種商品(100-m)件,根據(jù)題意列出不等式,求出m的取值范圍,設(shè)利潤(rùn)為w,列出m關(guān)于利潤(rùn)w的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)得出最值即可.
試題解析:
(1) 設(shè)甲種商品每件的進(jìn)價(jià)為x元,乙種商品每件的進(jìn)價(jià)為y元
,解得
答:甲種商品每件的進(jìn)價(jià)為30元,乙種商品為70元
(2) 設(shè)該商場(chǎng)購(gòu)進(jìn)甲種商品m件,則購(gòu)進(jìn)乙種商品(100-m)件,利潤(rùn)為w
m≥4(100-m),解得m≥80
利潤(rùn)w=(40-30)m+(90-70)(100-m)=-10m+2000
∵k=-10<0
∴w隨m的增大而減小
當(dāng)m=80時(shí),w有最大值為1200
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)x3;
(2)2+3--;
(3)-2+;
(4)(1+)2(1+)2(1﹣)2(1﹣)2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB=AC=20,BC=32,D為BC邊上一點(diǎn),∠DAC=90°.求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】時(shí)鐘上的時(shí)針不停地旋轉(zhuǎn),從上午8時(shí)到上午11時(shí),時(shí)針旋轉(zhuǎn)的角度是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一組密碼的一部分.為了保密,許多情況下可采用不同的密碼,請(qǐng)你運(yùn)用所學(xué)知識(shí)找到破譯的“鑰匙”.目前,已破譯出“今天考試”的真實(shí)意思是“努力發(fā)揮”.若“今”所處的位置為(x,y),你找到的密碼鑰匙是 , 破譯“正做數(shù)學(xué)”的真實(shí)意思是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明.
如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,求證:DF∥AC.
證明:∵∠1=∠2(已知),∠1=∠3,∠2=∠4 ()
∴∠3=∠4(等量代換).
∴∥()
∴∠C=∠ABD ()
∵∠C=∠D ()
∴∠D=∠ABD ()
∴AC∥DF ()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)A(﹣2,2),B(0,5),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請(qǐng)畫(huà)出△A1B1C的圖形.
(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(﹣2,﹣6),請(qǐng)畫(huà)出平移后對(duì)應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2 , 請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過(guò)A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF=,求⊙O的半徑r及sinB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com