【題目】如圖,在△ABC中,AD是∠BAC的平分線,EF垂直平分AD交AB于E,交AC于F. 求證:四邊形AEDF是菱形.
【答案】證明:∵AD平分∠BAC ∴∠BAD=∠CAD
又∵EF⊥AD,
∴∠AOE=∠AOF=90°
∵在△AEO和△AFO中
,
∴△AEO≌△AFO(ASA),
∴EO=FO,
∵EF垂直平分AD,
∴EF、AD相互平分,
∴四邊形AEDF是平行四邊形
又EF⊥AD,
∴平行四邊形AEDF為菱形.
【解析】由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°證△AEO≌△AFO,推出EO=FO,得出平行四邊形AEDF,根據(jù)EF⊥AD得出菱形AEDF.
【考點精析】根據(jù)題目的已知條件,利用線段垂直平分線的性質(zhì)和菱形的判定方法的相關(guān)知識可以得到問題的答案,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A,C分別在坐標軸上,點B的坐標為(4,2),直線y=﹣x+3交AB,BC于點M,N,反比例函數(shù)y=的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,O是坐標原點,點A的坐標是(﹣1,0),點C的坐標是(0,﹣3)
(1)求拋物線的函數(shù)表達式.
(2)求直線BC的函數(shù)表達式和∠ABC的度數(shù).
(3)P為線段BC上一點,連接AC,AP,若∠ACB=∠PAB,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿BD對折,點A落在E處,BE與CD相交于F,若AD=3,BD=6.
(1)求證:△EDF≌△CBF;
(2)求∠EBC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.
(1)將這兩個三角形按圖①方式擺放,使點E落在AB上,DE的延長線交BC于點F.求證:BF+EF=DE;
(2)改變△ADE的位置,使DE交BC的延長線于點F(如圖②),則(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,寫出此時BF、EF與DE之間的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點D,交BC于點E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=,半徑為2的⊙C,分別交AC,BC于點D,E,得到 .
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC,下面的結(jié)論:①∠APO+∠DCO=30°;②△OPC是等邊三角形;③AC=AO+AP;④S△ABC=S四邊形AOCP , 其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P(4,a)在正比例函數(shù)y= x的圖象上,則點Q(2a﹣5,a)關(guān)于y軸的對稱點Q'坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com