【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),連接AF,BE相交于點P.

(1)若AE=CF;
①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當(dāng)點E從點A運動到點C時,試求點P經(jīng)過的路徑長.

【答案】
(1)

①證明:∵△ABC為等邊三角形,

∴AB=AC,∠C=∠CAB=60°,

又∵AE=CF,

在△ABE和△CAF中,

∴△ABE≌△CAF(SAS),

∴AF=BE,∠ABE=∠CAF.

又∵∠APE=∠BPF=∠ABP+∠BAP,

∴∠APE=∠BAP+∠CAF=60°.

∴∠APB=180°﹣∠APE=120°.

②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,

,即 ,所以APAF=12


(2)

若AF=BE,有AE=BF或AE=CF兩種情況.

①當(dāng)AE=CF時,點P的路徑是一段弧,由題目不難看出當(dāng)E為AC的中點的時候,點P經(jīng)過弧AB的中點,此時△ABP為等腰三角形,且∠ABP=∠BAP=30°,

∴∠AOB=120°,

又∵AB=6,

∴OA= ,

點P的路徑是

②當(dāng)AE=BF時,點P的路徑就是過點C向AB作的垂線段的長度;因為等邊三角形ABC的邊長為6,所以點P的路徑為:

所以,點P經(jīng)過的路徑長為 或3


【解析】(1)①證明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的長度,再用平行線分線段成比例定理或者三角形相似定理求得 的比值,即可以得到答案.(2)當(dāng)點F靠近點C的時候點P的路徑是一段弧,由題目不難看出當(dāng)E為AC的中點的時候,點P經(jīng)過弧AB的中點,此時△ABP為等腰三角形,繼而求得半徑和對應(yīng)的圓心角的度數(shù),求得答案.點F靠近點B時,點P的路徑就是過點B向AC做的垂線段的長度;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過y軸上一點P(0,1)作平行于x軸的直線PB,分別交函數(shù)y1=x2(x≥0)與y2= (x≥0)的圖象于A1 , B1兩點,過點B1作y軸的平行線交y1的圖象于點A2 , 再過A2作直線A2B2∥x軸,交y2的圖象于點B2 , 依次進行下去,連接A1A2 , B1B2 , A2A3 , B2B3 , …,記△A2A1B1的面積為S1 , △A2B1B2的面積為S2 , △A3A2B2的面積為S3 , △A3B2B3的面積為S4 , …則S2016=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點,矩OABC的位置如圖所示,點A,C的坐標(biāo)分別為(10,0),(0,8),點P是y軸上的一個動點,將△OAP沿AP翻折得到:△O′AP,直線BC與直線O′P交于點E,與直線O′A交于點F.

(1)當(dāng)O′落在直線BC上時,求折痕AP的長.
(2)當(dāng)點P在y軸正半軸上時,若△PCE與△POA相似,求直線AP的解析式;
(3)在點P的運動過程中,是否存在某一時刻,使得 ?若存在,求點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)上學(xué)期的數(shù)學(xué)歷次測驗成績?nèi)缦卤硭荆?/span>

測驗類別

平時測驗

期中測驗

期末測驗

1

2

3

成績

100

106

106

105

110

(1)該同學(xué)上學(xué)期5次測驗成績的眾數(shù)為 ,中位數(shù)為 ;

(2)該同學(xué)上學(xué)期數(shù)學(xué)平時成績的平均數(shù)為 ;

(3)該同學(xué)上學(xué)期的總成績是將平時測驗的平均成績、期中測驗成績、期末測驗成績按照2:3:5的比例計算所得,求該同學(xué)上學(xué)期數(shù)學(xué)學(xué)科的總評成績(結(jié)果保留整數(shù))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】受國內(nèi)外復(fù)雜多變的經(jīng)濟環(huán)境影響,去年1至7月,原材料價格一路攀升,義烏市某服裝廠每件衣服原材料的成本y1(元)與月份x(1≤x≤7,且x為整數(shù))之間的函數(shù)關(guān)系如下表:

月份x

1

2

3

4

5

6

7

成本(元/件)

56

58

60

62

64

66

68

8至12月,隨著經(jīng)濟環(huán)境的好轉(zhuǎn),原材料價格的漲勢趨緩,每件原材料成本y2(元)與月份x的函數(shù)關(guān)系式為y2=x+62(8≤x≤12,且x為整數(shù)).
(1)請觀察表格中的數(shù)據(jù),用學(xué)過的函數(shù)相關(guān)知識求y1與x的函數(shù)關(guān)系式.
(2)若去年該衣服每件的出廠價為100元,生產(chǎn)每件衣服的其他成本為8元,該衣服在1至7月的銷售量p1(萬件)與月份x滿足關(guān)系式p1=0.1x+1.1(1≤x≤7,且x為整數(shù)); 8至12月的銷售量p2(萬件)與月份x滿足關(guān)系式p2=﹣0.1x+3(8≤x≤12,且x為整數(shù)),該廠去年哪個月利潤最大?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F(xiàn)分別是菱形ABCD的邊AB,AD的中點,且AB=5,AC=6.

(1)求對角線BD的長;

(2)求證:四邊形AEOF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC的三個頂點的坐標(biāo)分別為A﹣2,3),B﹣6,0),C﹣1,0).

1)請直接寫出點B關(guān)于點A對稱的點的坐標(biāo);

2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應(yīng)點的坐標(biāo);

3)請直接寫出:以A、BC為頂點的平行四邊形的第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上有 A、B 兩點,所表示的有理數(shù)分別為 a、b,已知 AB=12,原點 O 是線段AB 上的一點,且 OA=2OB.

1a,b

2若動點 P,Q 分別從 A,B 同時出發(fā),向右運動,點 P 的速度為每秒 2 個單位長度,點 Q 的速度為每秒 1 個單位長度,設(shè)運動時間為 t 秒,當(dāng)點 P 與點 Q 重合時,PQ 兩點停止運動.

①當(dāng) t 為何值時,2OPOQ=4

②當(dāng)點 P 到達點 O 時,動點 M 從點 O 出發(fā),以每秒 3 個單位長度的速度也向右運動,當(dāng)點 M 追上點 Q 后立即返回,以同樣的速度向點 P 運動,遇到點 P 后再立即返回,以同樣的速度向點 Q 運動,如此往返,直到點 P,Q 停止時,點 M 也停止運動,求在此過程中點 M 行駛的總路程,并直接寫出點 M 最后位置在數(shù)軸上所對應(yīng)的有理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校的學(xué)生為了對小雁塔有基本的認(rèn)識,在老師的帶領(lǐng)下對小雁塔進行了測量.測量方法如下:如圖,間接測得小雁塔地部點D到地面上一點E的距離為115.2米,小雁塔的頂端為點B,且BD⊥DE,在點E處豎直放一個木棒,其頂端為C,CE=1.72米,在DE的延長線上找一點A,使A、C、B三點在同一直線上,測得AE=4.8米.求小雁塔的高度.

查看答案和解析>>

同步練習(xí)冊答案