【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),矩OABC的位置如圖所示,點(diǎn)A,C的坐標(biāo)分別為(10,0),(0,8),點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),將△OAP沿AP翻折得到:△O′AP,直線BC與直線O′P交于點(diǎn)E,與直線O′A交于點(diǎn)F.
(1)當(dāng)O′落在直線BC上時(shí),求折痕AP的長(zhǎng).
(2)當(dāng)點(diǎn)P在y軸正半軸上時(shí),若△PCE與△POA相似,求直線AP的解析式;
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得 ?若存在,求點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:圖1,當(dāng)O′落在直線BC上時(shí),在RT△ABO′中,∵AO′=10,AB=8,
∴BO′= = =6,
∵△APO′是由△AOP翻折,
∴可以設(shè)PO=PO′=x,
在RT△PCO′中,∵PO′2=PC2+CO′2,
∴x2=(8﹣x)2+42,
∴x=5,
∴AP= = =5
(2)
解:當(dāng)∠CPE=∠APO時(shí),
∵∠CPE=∠APO=∠APO′=60°,
∴OP= OA= ,
設(shè)直線AP為y=kx+b,由題意 解得 ,
∴直線AP為y=﹣ x+ .
當(dāng)∠CPE=∠OAP時(shí),∠CEP=∠APO=∠APO′,此時(shí)AP∥EC,顯然不可能
(3)
解:情形1如圖2中,
∵CE= BC=2,
∴BE=8,AE= =8 ,EO′= =2 ,
設(shè)OP=x,在RT△PCE中,∵PE2=PC2+CE2,
∴(x﹣2 )2=(8﹣x)2+22,
∴x= ,此時(shí)P[0, ],
情形2如圖3中,
同理O′E=2 ,
設(shè)OP=x,在RT△PCE中,∵PE2=PC2+CE2,
∴(x+2 )2=(8﹣x)2+22,
∴x= ,此時(shí)P[0, ],
情形3如圖4中,
AE= = =4 ,
EO′= =6 ,
設(shè)OP=x,在RT△PCE中,∵PE2=PC2+CE2,
∴(6 ﹣x)2=(x﹣8)2+22,
∴x= ,此時(shí)P[0, ],
情形4如圖5中,
設(shè)OP=x,在RT△PCE中,∵PE2=PC2+CE2,
∴(6 ﹣x)2=(x+8)2+22,
∴x= ,此時(shí)P[0, ].
【解析】(1)先在RT△ABO′求出BO′,設(shè)PO=PO′=x,在RT△PCO′中利用勾股定理解決即可.(2)當(dāng)∠CPE=∠APO時(shí)得∠CPE=∠APO=∠APO′=60°求出OP= OA即可.當(dāng)∠CPE=∠OAP時(shí),∠CEP=∠APO=∠APO′,此時(shí)AP∥EC,顯然不可能.(3)分四種情形討論,在RT△PCE中利用E2=PC2+CE2列出方程求解 .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的性質(zhì)的相關(guān)知識(shí),掌握對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b,且|a+3|+|b-2|=0,A,B 之間的距離記為|AB|.請(qǐng)回答問(wèn)題:
(1)直接寫(xiě)出a,b, |AB|的值. a= ,b = , |AB|= ;
(2)設(shè)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)為x,當(dāng)|PA|-|PB|=2時(shí),求x的值;
(3)若點(diǎn)P在點(diǎn)A的左側(cè),M、N分別是PA、PB的中點(diǎn).當(dāng)點(diǎn)P在點(diǎn)A的左側(cè)移動(dòng)時(shí),式子|PN|-|PM|的值是否發(fā)生改變?若不變,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具.利用數(shù)軸可以將數(shù)與形完美的結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數(shù)軸上A點(diǎn)、B點(diǎn)表示的數(shù)為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,若a>b,則可簡(jiǎn)化為AB=a﹣b.
如圖:
已知數(shù)軸上有A、B兩點(diǎn),分別表示的數(shù)為﹣10,8,點(diǎn)A以每秒3個(gè)單位的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)B以每秒2個(gè)單位向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(綜合運(yùn)用).
(1)點(diǎn)A運(yùn)動(dòng)2秒后所在位置的點(diǎn)表示的數(shù)為 ;點(diǎn)B運(yùn)動(dòng)3秒后所在位置的點(diǎn)表示的數(shù)為 ;
(2)它們按上述方式運(yùn)動(dòng),A、B兩點(diǎn)經(jīng)過(guò)多少秒會(huì)相遇,相遇點(diǎn)所表示的數(shù)是什么?
(3)它們按上述方式運(yùn)動(dòng),A、B兩點(diǎn)經(jīng)過(guò)多少秒后相距2個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同學(xué)們,足球是世界上第一大運(yùn)動(dòng),你熱愛(ài)足球運(yùn)動(dòng)嗎?已知在足球比賽中,勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分,一隊(duì)共踢了30場(chǎng)比賽,負(fù)了9場(chǎng),共得47分,那么這個(gè)隊(duì)勝了( 。
A. 10場(chǎng) B. 11場(chǎng) C. 12場(chǎng) D. 13場(chǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某飛機(jī)于空中探測(cè)某座山的高度,在點(diǎn)A處飛機(jī)的飛行高度是AF=3700米,從飛機(jī)上觀測(cè)山頂目標(biāo)C的俯角是45°,飛機(jī)繼續(xù)以相同的高度飛行300米到B處,此時(shí)觀測(cè)目標(biāo)C的俯角是50°,求這座山的高度CD.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=2,∠A=60°,BC=,CD=3.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(a,b),點(diǎn)P的“變換點(diǎn)”P`的坐標(biāo)定義如下:當(dāng)時(shí),P`點(diǎn)坐標(biāo)為(a,-b);當(dāng)時(shí),P`點(diǎn)坐標(biāo)為(b,-a)。線段l:上所有點(diǎn)按上述“變換點(diǎn)”組成一個(gè)新的圖形,若直線與組成的新的圖形有兩個(gè)交點(diǎn),則k的取值范圍是( )
A. B. 或 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P.
(1)若AE=CF;
①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),試求點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過(guò)D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com