【題目】如圖,在△ABC中,AB=AC=10cm,BC=12cm,點P從點C出發(fā),在線段CB上以每秒1cm的速度向點B勻速運動.與此同時,點M從點B出發(fā),在線段BA上以每秒lcm的速度向點A勻速運動.過點P作PN⊥BC,交AC點N,連接MP,MN.當點P到達BC中點時,點P與M同時停止運動.設(shè)運動時間為t秒(t>0).
(1)當t為何值時,PM⊥AB.
(2)設(shè)△PMN的面積為y(cm2),求出y與x之間的函致關(guān)系式.
(3)是否存在某一時刻t,使S△PMN:S△ABC=1:5?若存在,求出t的值;若不存在,說明理由.
【答案】
(1)
解:過點A作AD⊥BC于D,
∵AB=AC,∠ADB=90°,
∴BD=CD=6,
∴ =8,
∵MP⊥AB,
∴∠BMP=∠ADB=90°,
∵∠B=∠B,
∴△BMP∽△BDA,
∴ ,
∴ 解得t= ,
∴當t為 時,PM⊥AB
(2)
解:過點M作ME⊥NP于E,交AD于F.
∵BC⊥NP,
∴NP∥AD,
∴∠ADP=∠C,
∵∠C=∠NPC,
∴△BMP∽△BDA,
∴ ,
∴ ,
∴PN= ,同理MF= ,
∵∠BPN=∠ADP=∠MEP=90°,
∴四邊形DPEF是矩形,
∴EF=DP=6﹣t,
∴ME=MF+EF= (10﹣t)+6﹣t=12﹣ ,
∴S△MPN= PNME= =﹣ +8t,(0<t≤6)
(3)
解:存在.
由題意:﹣ +8t= × ×12×8,
解得到t= 或6.
所以t= 秒或6秒時,S△PMN:S△ABC=1:5.
【解析】(1)根據(jù)△BMP∽△BDA得 即可列出方程解決.(2)根據(jù)△BMP∽△BDA得 求出PN,MF,在證明四邊形DPEF是矩形得到ME即可.(3)代入(2)即可用方程解決.
【考點精析】根據(jù)題目的已知條件,利用相似圖形和相似三角形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握形狀相同,大小不一定相同(放大或縮。;判定:①平行;②兩角相等;③兩邊對應(yīng)成比例,夾角相等;④三邊對應(yīng)成比例;對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),直線a、b相交于O,b∥c,則a與c的位置關(guān)系是( 。
A.平行
B.相交
C.重合
D.平行或重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)在一次用頻率去估計概率的實驗中,統(tǒng)一了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖所示,則符合這一結(jié)果的實驗可能是( )
A.從一個裝有2個白球和1個紅球的袋子中任取兩球,取到兩個白球的概率
B.任意寫一個正整數(shù),它能被2整除的概率
C.拋一枚硬幣,連續(xù)兩次出現(xiàn)正面的概率
D.擲一枚正六面體的骰子,出現(xiàn)1點的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,蓄電池的電壓為定值,使用此電源時,用電器的電流I(A)與電阻R(Ω)成反比例.已知電阻R=7.5Ω時,電流I=2A.
(1)求確定I與R之間的函數(shù)關(guān)系式并說明此蓄電池的電壓是多少;
(2)若以此蓄電池為電源的用電器額定電流不能超過5A,則該電路中電阻的電阻值應(yīng)滿足什么條件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數(shù) | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | 9.5 |
(1)完成表中填空①;②;
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績方差為 ,你認為推薦誰參加比賽更合適,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2﹣4x的圖象與x軸、直線y=x的一個交點分別為點A,B,CD是線段OB上的一動線段,且CD=2,過點C,D的兩直線都平行于y軸,與拋物線相交于點F,E,連接EF.
(1)點A的坐標為 , 線段OB的長=;
(2)設(shè)點C的橫坐標為m ①當四邊形CDEF是平行四邊形時,求m的值;
②連接AC、AD,求m為何值時,△ACD的周長最小,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進一種商品,每件商品進價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:等腰三角形、平行四邊形、菱形、雙曲線、拋物線.這些都是我們在初中學(xué)習(xí)階段學(xué)過的幾何圖形或函數(shù)的圖象,那么從它們之中隨機抽取兩個,得到的都是中心對稱圖形的概率是( )
A.
B.
C.
D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com