【題目】如圖,在△ABC中,∠BAC90°,ABAC,△ABC的三個(gè)頂點(diǎn)在互相平行的三條直線(xiàn)l1,l2l3上,且l1l2之間的距離是1,l2,l3之間的距離是2,則BC的長(zhǎng)度為_____

【答案】2

【解析】

過(guò)點(diǎn)BBEl1于點(diǎn)E,過(guò)點(diǎn)CCFl1于點(diǎn)F,由余角的性質(zhì)可得∠CAF=∠BAE,由AAS可證ABE≌△CAF,可得AECF1,由勾股定理可求AB的長(zhǎng),BC的長(zhǎng).

解:如圖,過(guò)點(diǎn)BBEl1于點(diǎn)E,過(guò)點(diǎn)CCFl1于點(diǎn)F

l1,l2之間的距離是1l2,l3之間的距離是2,

BE3,CF1

∵∠BAC90°,BEAF

∴∠BAE+CAF90°,∠BAE+ABE90°

∴∠CAF=∠BAE,且ABAC,∠AEB=∠AFC90°

∴△ABE≌△CAFAAS

AECF1,

∴在RtABE中,AB

∵∠BAC90°,ABAC

BCAB2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x22m+1x+mm+1=0,

(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)方程的兩根分別為x1、x2,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于點(diǎn)F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿(mǎn)足∠BAC=∠APC=60°,

(1)求證:△ABC是等邊三角形;

(2)求圓心O到BC的距離OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑如圖是水平放置的破裂管道有水部分的截面

(1)請(qǐng)你用直尺和圓規(guī)作出這個(gè)輸水管道的圓形截面的圓心(保留作圖痕跡);

(2)若這個(gè)輸水管道有水部分的水面寬AB=8 cm,水面最深地方的高度為2 cm,求這個(gè)圓形截面的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)A(3,0),對(duì)稱(chēng)軸為直線(xiàn)x=1,給出以下結(jié)論:①abc0;b2﹣4ac0;a+b+cax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)為函數(shù)圖象上的兩點(diǎn),則y1y2,其中正確的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)求助沒(méi)有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑作圓弧,分別交AB,ACE,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,以大于EF長(zhǎng)為半徑作圓弧,兩條弧交于點(diǎn)G,作射線(xiàn)AGCD于點(diǎn)H,若∠C=120°,則∠AHD=(  )

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線(xiàn)L1:y=﹣x2+2x+3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,在L1上任取一點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)l⊥x軸,垂足為D,將L1沿直線(xiàn)l翻折得到拋物線(xiàn)L2,交x軸于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).

(1)當(dāng)L1L2重合時(shí),求點(diǎn)P的坐標(biāo);

(2)當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),求此時(shí)L2的解析式;并直接寫(xiě)出L1L2中,y均隨x的增大而減小時(shí)的x的取值范圍;

(3)連接PM,PB,設(shè)點(diǎn)P(m,n),當(dāng)n= m時(shí),求△PMB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案