【題目】求符合下列條件的拋物線的解析式:
(1)將拋物線y=-x2先向上平移1個(gè)單位長(zhǎng)度,再繞其頂點(diǎn)旋轉(zhuǎn)180°;
(2)拋物線y=ax2+1經(jīng)過點(diǎn)(1,0);
(3)拋物線y=ax2-1與直線y=x+3的一個(gè)交點(diǎn)是(2,m).
【答案】 (1) y=x2+1;(2) y=-x2+1;(3) y=x2-1.
【解析】試題分析:(1)根據(jù)拋物線的幾何變換,拋物線y=-x2先向上平移1個(gè)單位長(zhǎng)度,所得拋物線解析式為y=-x2+1,再繞其頂點(diǎn)旋轉(zhuǎn)180°,與原拋物線的開口大小相等,方向相反時(shí),頂點(diǎn)不變,其二次項(xiàng)系數(shù)互為相反數(shù);
(2)把(1,0)代入解析式求出a即可;
(3)把x=2代入直線解析式y=x+3,得y=4,因此交點(diǎn)坐標(biāo)為(2,4),把(2,4)代入拋物線解析式,得a=,從而得到拋物線解析式.
試題解析:(1)拋物線y=-x2先向上平移1個(gè)單位長(zhǎng)度,得y=-x2+1,
再繞其頂點(diǎn)旋轉(zhuǎn)180°,得y=x2+1;
(2)把(1,0)代入直線解析式y=ax2+1,得a+1=0,解得a=-1,
所以拋物線的解析式為:y=-x2+1;
(3)把x=2代入直線解析式y=x+3,
得y=×2+3=4,
因此交點(diǎn)坐標(biāo)為(2,4),
把(2,4)代入拋物線解析式,得4=a×22-1,a=,
所以拋物線解析式為:y=x2-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知△ABC三個(gè)頂點(diǎn)分別為A(﹣1,2)、B(2,1)、C(4,5).
(1)畫出△ABC關(guān)于x對(duì)稱的△A1B1C1;
(2)以原點(diǎn)O為位似中心,在x軸的上方畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2,并求出△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊿ABC中,∠A=40°,∠ACB=104°,BD為AC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).
【答案】32°
【解析】試題分析:根據(jù)三角形的內(nèi)角和定理求出∠ABC,再根據(jù)角平分線的定義求出∠ABE,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式求出∠BED,再根據(jù)直角三角形兩銳角互余列式進(jìn)行計(jì)算即可得解.
試題解析:由三角形內(nèi)角和定理,得∠B+∠ACB+∠BAC=180°,
又∠A=40°,∠ACB=104°,
∴∠ABC=180°-40°-104°=36°,
又∵BE平分∠ABC,
∴∠ABE=∠ABC=18°
∴∠BED=∠A+∠ABE=40°+18°=58°,
又∵∠BED+∠DBE=90°,
∴∠DBE=90°-∠BED=90°-58°=32°.
【題型】解答題
【結(jié)束】
25
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.
根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是________米
(2)小明在書店停留了___________分鐘.
(3)本次上學(xué)途中,小明一共行駛了________ 米,一共用了______ 分鐘.
(4)在整個(gè)上學(xué)的途中_________(哪個(gè)時(shí)間段)小明騎車速度最快,最快的速度是___________米/分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.
根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是________米
(2)小明在書店停留了___________分鐘.
(3)本次上學(xué)途中,小明一共行駛了________ 米,一共用了______ 分鐘.
(4)在整個(gè)上學(xué)的途中_________(哪個(gè)時(shí)間段)小明騎車速度最快,最快的速度是___________米/分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC,CF⊥AD,垂足分別為E,F,AE,CF分別與BD交于點(diǎn)G和H,且AB=.
(1)若tan∠ABE =2,求CF的長(zhǎng);
(2)求證:BG=DH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,,直線MN分別與x軸、y軸交于點(diǎn)M(6,0),N(0, ),等邊△ABC的頂點(diǎn)B與原點(diǎn)O重合,BC邊落在x軸正半軸上,點(diǎn)A恰好落在線段MN上,將等邊△ABC從圖l的位置沿x軸正方向以每秒l個(gè)單位長(zhǎng)度的速度平移,邊AB,AC分別與線段MN交于點(diǎn)E,F(如圖2所示),設(shè)△ABC平移的時(shí)間為t(s).
(1)等邊△ABC的邊長(zhǎng)為_______;
(2)在運(yùn)動(dòng)過程中,當(dāng)t=_______時(shí),MN垂直平分AB;
(3)若在△ABC開始平移的同時(shí).點(diǎn)P從△ABC的頂點(diǎn)B出發(fā).以每秒2個(gè)單位長(zhǎng)度的速度沿折線BA—AC運(yùn)動(dòng).當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí)即停止運(yùn)動(dòng).△ABC也隨之停止平移.
①當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),若△PEF與△MNO相似.求t的值;
②當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí),設(shè),求S與t的函數(shù)關(guān)系式,并求出S的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將三角形各頂點(diǎn)的縱坐標(biāo)都減去1,橫坐標(biāo)保持不變,所得圖形與原圖形相比是( )
A.向下平移了1個(gè)單位B.向上平移了1個(gè)單位
C.向左平移了1個(gè)單位D.向右平移了1個(gè)單位
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com