分析 在△ABE中可求得∠B,則可求得∠BAD,由BE=CD可求得BD=CE,可證明△ABD≌△ACE,可求得∠CAE=∠BAD,可求得答案.
解答 解:
∵∠2=120°,∠BAE=80°,
∴∠B=∠2-∠BAE=120°-80°=40°,
∵BE=CD,
∴BD=CE,
在△ABD和△ACE中
$\left\{\begin{array}{l}{AD=AE}\\{∠1=∠2}\\{BD=CE}\end{array}\right.$
∴△ABD≌△ACE(SAS),
∴∠C=∠B=40°,
∴∠CAE=180°-∠2-∠C=180°-120°-40°=20°,
故答案為:20°.
點(diǎn)評 本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即對應(yīng)邊、對應(yīng)角相等)是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | AD=BC | B. | ∠C=∠D | C. | AD∥BC | D. | OC=OB |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com