探究題.
如圖,已知△ABC,∠BAC=90°,AB=AC,CD垂直于∠ABC角平分線BD于D,AC,BD交于E.AF為BC中線,交BE于G.
(1)求證:BE=2CD;
(2)CE和BG大小如何?不必證明.

(1)證明:延長CD交BA延長線于H.
∵∠BAC=90°,CD⊥BD,
∴∠BAC=∠CDB=90°,又∠AEB=∠DEC,
∴△ABE∽△DCE,
∴∠ABD=∠ACD,即∠ABE=∠ACH.
在△ABE與△ACH中,

∴△ABE≌△ACH(ASA),
∴BE=CH;
∵BD平分∠ABC,BD⊥CH,
∴CH=2CD,
∴BE=2CD;

(2)解:CE<BG.
分析:(1)延長CD與BA延長線交于H.BD為角平分線.構建全等三角形△ABE≌△ACH(ASA),然后由全等三角形的對應邊相等的性質(zhì)、等腰三角形的“三合一”的性質(zhì)證得結論即可;
(2)根據(jù)圖示直接回答.
點評:本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、等腰三角形的判定與性質(zhì).本題通過作輔助線“延長CD交BA延長線于H”構建全等三角形來證明的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、探究題.
如圖,已知△ABC,∠BAC=90°,AB=AC,CD垂直于∠ABC角平分線BD于D,AC,BD交于E.AF為BC中線,交BE于G.
(1)求證:BE=2CD;
(2)CE和BG大小如何?不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、探究題:
如圖,已知△ABC,
(1)畫出△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A;
(2)比較兩個三角形,你認為△ABC與△A′B′C′全等嗎?
(3)通過畫圖和比較,你得出的結論是
BC=B′C′,∠B=∠B′,∠C=∠C′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(10分)(1)探究歸納:如圖,已知△ABC與△ABD的面積相等,試判斷
【小題1】(1)ABCD的位置關系,并說明理由.

【小題2】(2)結論應用:①如圖,點M,N在反比例函數(shù)的圖象上,過點MME⊥y軸,過點NNFx軸,垂足分別為E,F.證明:MNEF.

②如圖,點M,N在反比例函數(shù)y=的圖象上,且M(2,m),N是第三象限內(nèi)反比例函數(shù)y=的圖象上一動點.過點MME⊥y軸,過點NEFx軸,垂足分別為E,F.說明MNEF.并求當四邊形MEFN的面積為12時點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

探究題:
如圖,已知△ABC,
(1)畫出△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A;
(2)比較兩個三角形,你認為△ABC與△A′B′C′全等嗎?
(3)通過畫圖和比較,你得出的結論是______.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案