【題目】.. 計(jì)算題:

(1)8﹣(﹣10)﹣|﹣2|

(2)2 ﹣3+(﹣3)﹣(+5

(3)﹣24×(﹣ +

(4)﹣49 ×10(簡(jiǎn)便運(yùn)算)

(5)﹣ ÷(+

(6)3×(﹣38 )﹣4×(﹣38 )﹣38

【答案】(1)16;(2)﹣10;(3)2;(4)﹣499;(5);(6)0.

【解析】

(1)減法轉(zhuǎn)化為加法,計(jì)算絕對(duì)值,再計(jì)算加減可得;

(2)運(yùn)用加法的交換律和結(jié)合律計(jì)算可得;

(3)運(yùn)用乘法分配律計(jì)算可得;

(4)原式變形為(﹣50)×10,再利用乘法分配律計(jì)算可得;

(5)先計(jì)算括號(hào)內(nèi)的加減運(yùn)算,再計(jì)算除法即可得;

(6)先提取公因數(shù),再進(jìn)一步計(jì)算即可.

解:(1)原式=8+10﹣2=16;

(2)原式=(2﹣3)+(﹣3﹣5),

=﹣1﹣9,

=﹣10;

(3)原式=12﹣18+8=2;

(4)原式=(﹣50)×10,

=×10﹣50×10,

=﹣500,

=﹣499

(5)原式=-÷(+),

=﹣÷(﹣),

=﹣×(﹣8),

=;

(6)原式=(﹣38)×(3﹣4+1),

=(﹣38)×0,

=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程 +2 x-6=0的根是( 。
A. = =
B. =0, =-2
C. = =-3
D. =- , =3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=k1x+b與x軸,y軸相交于P,Q兩點(diǎn),則y= 的圖象相交于A(﹣2,m),B(1,n)兩點(diǎn),連接OA,OB,給出下列結(jié)論:①k1k2<0;②m+ n=0;③SAOP=SBOQ;④不等式k1x+b> 的解集在x<﹣2或0<x<1,其中正確的結(jié)論是(
A.②③④
B.①②③④
C.③④
D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,按如下步驟作圖: ①分別以A,C為圓心,大于 AC的長(zhǎng)為半徑畫(huà)弧,兩弧交于P,Q兩點(diǎn);
②作直線PQ,分別交AB,AC于點(diǎn)E,D,連接CE;
③過(guò)C作CF∥AB交PQ于點(diǎn)F,連接AF.

(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上A、B兩點(diǎn)對(duì)應(yīng)的數(shù)為0、10,P為數(shù)軸上一點(diǎn)

(1)點(diǎn)PAB線段的中點(diǎn),點(diǎn)P對(duì)應(yīng)的數(shù)為   

(2)數(shù)軸上有點(diǎn)P,使PA,B的距離之和為20,點(diǎn)P對(duì)應(yīng)的數(shù)為   

(3)若點(diǎn)P點(diǎn)表示6,點(diǎn)M以每秒鐘5個(gè)單位的速度從A點(diǎn)向右運(yùn)動(dòng),點(diǎn)N以每秒鐘1個(gè)單位的速度從B點(diǎn)向右運(yùn)動(dòng),t秒后有PM=PN,求時(shí)間t的值(畫(huà)圖寫(xiě)過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:如圖1,ABCD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).

小明的思路是:如圖2,過(guò)PPEAB,通過(guò)平行線性質(zhì),可得∠APC=50°+60°=110°.

問(wèn)題遷移:

(1)如圖3,ADBC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)PA、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

(2)在(1)的條件下,如果點(diǎn)PAM兩點(diǎn)之間和B、O兩點(diǎn)之間上運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你分別直接寫(xiě)出∠CPD、∠α、∠β之間的數(shù)量關(guān)系.

,圖1) ,圖2)

,圖3) ,備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測(cè)得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為64°,求建筑物的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校舉辦迎奧運(yùn)知識(shí)競(jìng)賽,設(shè)一、二、三等獎(jiǎng)共12名,獎(jiǎng)品發(fā)放方案如下表:

一等獎(jiǎng)

二等獎(jiǎng)

三等獎(jiǎng)

1盒福娃和1枚徽章

1盒福娃

1枚徽章

用于購(gòu)買(mǎi)獎(jiǎng)品的總費(fèi)用不少于1000元但不超過(guò)1100元,小明在購(gòu)買(mǎi)福娃和微章前,了解到如下信息:

(1)求一盒福娃和一枚徽章各多少元?

(2)若本次活動(dòng)設(shè)一等獎(jiǎng)2名,則二等獎(jiǎng)和三等獎(jiǎng)應(yīng)各設(shè)多少名?

查看答案和解析>>

同步練習(xí)冊(cè)答案