【題目】對于平面直角坐標系中的點,,給出如下定義:若,為某個三角形的頂點,且邊上的高,滿足,則稱該三角形為點,的“生成三角形”.
(1)已知點;
①若以線段為底的某等腰三角形恰好是點,的“生成三角形”,求該三角形的腰長;
②若是點,的“生成三角形”,且點在軸上,點在直線上,則點的坐標為______;
(2)的圓心為點,半徑為2,點的坐標為,為直線上一點,若存在,是點,的“生成三角形”,且邊與有公共點,直接寫出點的橫坐標的取值范圍.
【答案】(1)①該三角形的腰長為;②,或;(2).
【解析】
(1)①畫圖,不妨設滿足條件的三角形為等腰,則.過點作于點,由勾股定理可求得其腰長;
②分點為直角頂點和點為直角頂點兩種情況,結(jié)合圖形可得結(jié)論;
(2)分點為直角頂點和點為直角頂點,由圖形可得答案.
(1)①如圖,不妨設滿足條件的三角形為等腰,則.過點作于點,
∴,
∵以線段為底的等腰恰好是點,的“生成三角形”,
∴.
∴,
答:該三角形的腰長為.
②如圖所示:若為直角頂點時,點的坐標為或;
若為直角頂點時,點的坐標為或,
綜上,點的坐標為,或.
(2)由圖可得:
若為直角頂點:;
若為直角頂點:;
綜上,.
答:點的橫坐標的取值范圍為:.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,給出如下定義:將一個函數(shù)的圖象在y軸左側(cè)的部分沿x軸翻折,其余部分不變,兩部分組成的函數(shù)圖象,稱為這個函數(shù)的變換圖象.
(1)點A(-1,4)在函數(shù)y=x+m的變換圖象上,求m的值;
(2)點B(n,2)在函數(shù)y=-x2+4x的變換圖象上,求n的值;
(3)將點C(,1)向右平移5個單位長度得到點D.當線段CD與函數(shù)y= -x2+4x+t的變換圖象有兩個公共點,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個質(zhì)地均勻的正四面體的四個面上依次標有數(shù)字-2,0,1,2,連續(xù)拋擲兩次,朝下一面的數(shù)字分別是a,b,將其作為M點的橫、縱坐標,則點M(a,b)落在以A(6,0),B(2,0),C(0,2)為頂點的三角形內(nèi)(包含邊界)的概率是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點坐標;
(2)如圖2,若P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點共線,求此時P點坐標及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年是我國建國70周年,回顧過去展望未來,創(chuàng)新是引領(lǐng)發(fā)展的第一動力,北京科技創(chuàng)新能力不斷增強,下面的統(tǒng)計圖反映了2010﹣2018年北京市每萬人發(fā)明專利申請數(shù)與授權(quán)數(shù)的情況.
根據(jù)統(tǒng)計圖提供的信息,下列推斷合理的是( )
A. 2010﹣2018年,北京市毎萬人發(fā)明專利授權(quán)數(shù)逐年增長
B. 2010﹣2018年,北京市毎萬人發(fā)明專利授權(quán)數(shù)的平均數(shù)超過10件
C. 2010年申請后得到授權(quán)的比例最低
D. 2018年申請后得到授權(quán)的比例最高
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l:y=x+b與x軸交于點A(﹣2,0),與y軸交于點B.雙曲線y與直線l交于P,Q兩點,其中點P的縱坐標大于點Q的縱坐標
(1)求點B的坐標;
(2)當點P的橫坐標為2時,求k的值;
(3)連接PO,記△POB的面積為S.若,結(jié)合函數(shù)圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B→A,B→C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當點N到達終點C時,點M也隨之停止運動.設運動時間為t秒.
(1)若a=4厘米,t=1秒,則PM=______厘米;
(2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù),有下列結(jié)論:①其圖象與x軸一定相交;②若,函數(shù)在時,y隨x的增大而減;③無論a取何值,拋物線的頂點始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個點.其中所有正確的結(jié)論是___.(填寫正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com