【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線段AB有交點(diǎn),則r的取值范圍是( )

A.r≥1
B.1≤r≤
C.1≤r≤
D.1≤r≤4

【答案】C
【解析】解:作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,連接OA、OB,如圖所示

則四邊形OECF是正方形,

∴OF=CF=OE=CE,

∵∠C=90°,AC=4,BC=3,

∴AB= =5,

∵O是△ABC的內(nèi)心,

∴CE=CF=OF=OE= (AC+BC﹣AB)=1,

∴AF=AC﹣CF=3,BE=BC﹣CE=2,

∴OA= ,OB= = ,

當(dāng)r=1時(shí),以O(shè)為圓心,r為半徑的圓與線段AB有唯一交點(diǎn);

當(dāng)1<r≤ 時(shí),以O(shè)為圓心,r為半徑的圓與線段AB有兩個(gè)交點(diǎn);

當(dāng) <r≤ 時(shí),以O(shè)為圓心,r為半徑的圓與線段AB有1個(gè)交點(diǎn);

∴以O(shè)為圓心,r為半徑的圓與線段AB有交點(diǎn),則r的取值范圍是1≤r≤ ;

所以答案是:C

【考點(diǎn)精析】掌握直線與圓的三種位置關(guān)系和三角形的內(nèi)切圓與內(nèi)心是解答本題的根本,需要知道直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn);三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:
①ac<0; ②當(dāng)x>1時(shí),y的值隨x值的增大而減;
③當(dāng) 時(shí), ; ④3是方程ax2+(b﹣1)x+c=0的一個(gè)根.
其中正確的結(jié)論是(填正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本1.4有這樣一道例題:
問題4:用一根長22cm的鐵絲:
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32cm2的矩形?
據(jù)此,一位同學(xué)提出問題:“用這根長22cm的鐵絲能否圍成面積最大的矩形?若能圍成,求出面積最大值;若不能圍成,請說明理由.”請你完成該同學(xué)提出的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EFBCGHAB,EFGH的交點(diǎn)PBD上,則圖中面積相等的平行四邊形有( 。

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ACBC5,AB5,三角形頂點(diǎn)在相互平行的三條直線L1L2,L3上,且L2L3之間的距離為3,則L1,L3之間的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是AD、BC的中點(diǎn),P、Q分別是BM、DN的中點(diǎn).

1)求證:BMDN

2)求證:四邊形MPNQ是菱形;

3)矩形ABCD的邊長ABAD滿足什么數(shù)量關(guān)系時(shí)四邊形MPNQ為正方形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,A,B,C,D四點(diǎn)共圓,過點(diǎn)C的切線CE∥BD,與AB的延長線交于點(diǎn)E.

(1)求證:∠BAC=∠CAD;
(2)如圖②,若AB為⊙O的直徑,AD=6,AB=10,求CE的長;
(3)在(2)的條件下,連接BC,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的正方形網(wǎng)格中

作出關(guān)于直線MN對稱的;

經(jīng)過圖形平移得到,當(dāng)點(diǎn)A的坐標(biāo)是時(shí),請建立適當(dāng)?shù)闹苯亲鴺?biāo)系,分別寫出點(diǎn)的坐標(biāo).

【答案】1)見解析;(2,.

【解析】

(1)直接利用軸對稱圖形的性質(zhì)得出對應(yīng)點(diǎn)位置進(jìn)而得出答案;

(2)直接利用A點(diǎn)坐標(biāo)得出平面直角坐標(biāo)系,進(jìn)而得出各點(diǎn)坐標(biāo).

解:如圖所示:,即為所求;

點(diǎn),

【點(diǎn)睛】

此題主要考查了軸對稱變換以及平移變換、根據(jù)點(diǎn)的坐標(biāo)建立平面直角坐標(biāo)系,正確得出對應(yīng)點(diǎn)位置是解題關(guān)鍵.

型】解答
結(jié)束】
17

【題目】計(jì)算:計(jì)算:;解方程組:

查看答案和解析>>

同步練習(xí)冊答案