【題目】如圖,正方形ABCD的邊長(zhǎng)為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長(zhǎng)為_____

【答案】

【解析】

如圖,延長(zhǎng)BGCH于點(diǎn)E,

AG=CH=8,BG=DH=6,AB=CD=10,

∴AG2+BG2=AB2,CH2+DH2=DC2,△ABG≌△CDH,

∴∠AGB=∠CHD=90°,∠1=∠5,∠2=∠6,

∴∠1+∠2=90°,∠5+∠6=90°,

∵∠2+∠3=90°,∠4+∠5=90°,

∴∠1=∠3,∠2=∠4,

∵AB=BC,

∴△ABG≌△BCE,

∴BE=AG=8,CE=BG=6,

∴GE=BE-BG=8-6=2,HE=CH-CE=8-6=2,BE2+CE2=CD2,

∴∠BEC=90°,

∴HG=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分,規(guī)定:85x100A級(jí),75x85B級(jí),60x75C級(jí),x60D級(jí).現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問題:

1)在這次調(diào)查中,一共抽取了______名學(xué)生,α=______b= ;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中D級(jí)對(duì)應(yīng)的圓心角為______度;

4)若該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小方格都是邊長(zhǎng)為1的正方形

1)求的長(zhǎng)度.

2)用勾股定理的知識(shí)證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[發(fā)現(xiàn)]如圖∠ACB=∠ADB=90°,那么點(diǎn)D在經(jīng)過A,B,C三點(diǎn)的圓上(如圖①)

(1)[思考]如圖②,如果∠ACB=∠ADB=a(a≠90°)(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D還在經(jīng)過A, B,C三點(diǎn)的圓上嗎?

(2)我們知道,如果點(diǎn)D不在經(jīng)過A,B,C三點(diǎn)的圓上,那么點(diǎn)D要么在圓O外,要么在圓O內(nèi),以下該同學(xué)的想法說明了點(diǎn)D不在圓O外。
請(qǐng)結(jié)合圖④證明點(diǎn)D也不在⊙O外.


[結(jié)論]綜上可得結(jié)論:如圖②,如果∠ACB=∠ADB=a(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D在經(jīng)過A,B,C三點(diǎn)的圓上,即:點(diǎn)A、B、C、D四點(diǎn)共圓。
[應(yīng)用]利用上述結(jié)論解決問題:
如圖⑤,已知△ABC中,∠C=90°,將△ACB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個(gè)角度得△ADE,連接BE CD,延長(zhǎng)CD交BE于點(diǎn)F,

圖⑤
①求證:點(diǎn)B、C、A、F四點(diǎn)共圓;②求證:BF=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有一塊長(zhǎng)為30 m,寬為24 m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為一位旅行者在早晨8時(shí)從城市出發(fā)到郊外所走的路程單位:千米與時(shí)間單位:時(shí)的變量關(guān)系的圖象.根據(jù)圖象回答問題:

在這個(gè)變化過程中,自變量是______ ,因變量是______

時(shí)所走的路程是多少?他休息了多長(zhǎng)時(shí)間?

他從休息后直至到達(dá)目的地這段時(shí)間的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小明的探究過程,請(qǐng)你解決相關(guān)問題:

在函數(shù)中,自變量x可以是任意實(shí)數(shù);

如表yx的幾組對(duì)應(yīng)值:

X

0

1

2

3

4

Y

0

1

2

3

2

1

a

______;

,為該函數(shù)圖象上不同的兩點(diǎn),則______;

如圖,在平面直角坐標(biāo)系中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象:

該函數(shù)有______最大值最小值;并寫出這個(gè)值為______;

求出函數(shù)圖象與坐標(biāo)軸在第二象限內(nèi)所圍成的圖形的面積;

觀察函數(shù)的圖象,寫出該圖象的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線段AB有交點(diǎn),則r的取值范圍是( )

A.r≥1
B.1≤r≤
C.1≤r≤
D.1≤r≤4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某籃球興趣小組有15名同學(xué),在一次投籃比賽中,他們的成績(jī)?nèi)缬颐娴臈l形圖所示.這15名同學(xué)進(jìn)球數(shù)的眾數(shù)和中位數(shù)分別是( 。

A. 10,7 B. 7,7 C. 9,9 D. 9,7

【答案】D

【解析】試題根據(jù)眾數(shù)與中位數(shù)的定義分別進(jìn)行解答即可.

解:由條形統(tǒng)計(jì)圖給出的數(shù)據(jù)可得:9出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是9

把這組數(shù)據(jù)從小到達(dá)排列,最中間的數(shù)是7,則中位數(shù)是7

故選D

考點(diǎn):眾數(shù);條形統(tǒng)計(jì)圖;中位數(shù).

型】單選題
結(jié)束】
4

【題目】點(diǎn)都在直線上,且,則的關(guān)系是  

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案