【題目】已知:如圖,在矩形ABCD中,M、N分別是AD、BC的中點,PQ分別是BM、DN的中點.

1)求證:BMDN;

2)求證:四邊形MPNQ是菱形;

3)矩形ABCD的邊長ABAD滿足什么數(shù)量關(guān)系時四邊形MPNQ為正方形,請說明理由.

【答案】(1)詳見解析;(2)詳見解析;(3)當(dāng)ABAD時,四邊形MPNQ為正方形,理由詳見解析.

【解析】

1)因為MN分別是AD,BC的中點,由矩形的性質(zhì)可得DMBNDMBN,利用平行四邊形的判定和性質(zhì)可得結(jié)論;

2)由四邊形DMBN是平行四邊形,求出BMDN,BMDN,求出三角形MPNQ是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)求出MQNQ,根據(jù)菱形判定推出即可.

3)根據(jù)正方形的性質(zhì)進行解答即可.

證明:(1)∵四邊形ABCD是矩形,

ADBC,ADBC,

M、N分別AD、BC的中點,

DMBN,

∴四邊形DMBN是平行四邊形;

BMDN

2)∵四邊形DMBN是平行四邊形,

BMDNBMDN,

P、Q分別BM、DN的中點,

MPNQ,MPNQ,

∴四邊形MPNC是平行四邊形,

連接MN,

∵四邊形ABCD是矩形,

ADBC,ADBC

M、N分別AD、BC的中點,

DMCN,

∴四邊形DMNC是矩形,

∴∠DMN=∠C90°,

QDN中點,

MQNQ,

∴四邊形MPNQ是菱形.

3)當(dāng)ABAD時,四邊形MPNQ為正方形,

理由:∵ABAD,

ABAM

∴矩形ABNM是正方形,

P為正方形ABNM對角線BM的中點,

∴∠NPM90°,

∵四邊形MPNQ是菱形,

∴四邊形MPNQ是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小方格都是邊長為1的正方形

1)求的長度.

2)用勾股定理的知識證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.

下面是小明的探究過程,請你解決相關(guān)問題:

在函數(shù)中,自變量x可以是任意實數(shù);

如表yx的幾組對應(yīng)值:

X

0

1

2

3

4

Y

0

1

2

3

2

1

a

______;

,為該函數(shù)圖象上不同的兩點,則______;

如圖,在平面直角坐標系中,描出以上表中各對對應(yīng)值為坐標的點,并根據(jù)描出的點,畫出該函數(shù)的圖象:

該函數(shù)有______最大值最小值;并寫出這個值為______;

求出函數(shù)圖象與坐標軸在第二象限內(nèi)所圍成的圖形的面積;

觀察函數(shù)的圖象,寫出該圖象的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是( )

A.r≥1
B.1≤r≤
C.1≤r≤
D.1≤r≤4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律:

觀察下面由※組成的圖案和算式,解答問題:

1+3=22=4

1+3+5=32=9

1+3+5+7=42=16

1+3+5+7+9=52=25

1)猜想1+3+5+7+9+…+29=   = ;

2)猜想1+3+5+7+9+…+2n1+2n+1=   =

3)用上述規(guī)律計算:41+43+45+…+77+79

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線MNx軸、y軸分別相交于B、A兩點,OA,OB的長滿足式子

(1)A,B兩點的坐標;

(2)若點OAB的距離為,求線段AB的長;

3)在(2)的條件下,x軸上是否存在點P,使ΔABP使以AB為腰的等腰三角形,若存在請直接寫出滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC∠A=36°,DEAC的垂直平分線.

1)求證:△BCD是等腰三角形;

2△BCD的周長是a,BC=b,求△ACD的周長(用含ab的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某籃球興趣小組有15名同學(xué),在一次投籃比賽中,他們的成績?nèi)缬颐娴臈l形圖所示.這15名同學(xué)進球數(shù)的眾數(shù)和中位數(shù)分別是( 。

A. 10,7 B. 7,7 C. 9,9 D. 9,7

【答案】D

【解析】試題根據(jù)眾數(shù)與中位數(shù)的定義分別進行解答即可.

解:由條形統(tǒng)計圖給出的數(shù)據(jù)可得:9出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是9;

把這組數(shù)據(jù)從小到達排列,最中間的數(shù)是7,則中位數(shù)是7

故選D

考點:眾數(shù);條形統(tǒng)計圖;中位數(shù).

型】單選題
結(jié)束】
4

【題目】都在直線上,且,則的關(guān)系是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育文化用品商店購進籃球和排球共20個,進價和售價如下表所示,全部銷售完后共獲利潤260.

1)購進籃球和排球各多少個?

2)銷售6個排球的利潤與銷售幾個籃球的利潤相等?

查看答案和解析>>

同步練習(xí)冊答案