【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為_____.
【答案】12.5
【解析】
過A作AE⊥AC,交CB的延長線于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四邊形ABCD的面積與△ACE的面積相等,根據(jù)S△ACE=×5×5=12.5,即可得出結論.
如圖,過A作AE⊥AC,交CB的延長線于E,
∵∠DAB=∠DCB=90°,
∴∠D+∠ABC=180°=∠ABE+∠ABC,
∴∠D=∠ABE,
又∵∠DAB=∠CAE=90°,
∴∠CAD=∠EAB,
又∵AD=AB,
∴△ACD≌△AEB(ASA),
∴AC=AE,即△ACE是等腰直角三角形,
∴四邊形ABCD的面積與△ACE的面積相等,
∵S△ACE=×5×5=12.5,
∴四邊形ABCD的面積為12.5,
故答案為12.5.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,點D在直線BC上運動(不與點B、C重合),點E在射線AC上運動,且∠ADE=∠AED,設∠DAC=n.
(1)如圖(1),當點D在邊BC上時,且n=36°,則∠BAD= _________,∠CDE= _________.
(2)如圖(2),當點D運動到點B的左側時,其他條件不變,請猜想∠BAD和∠CDE的數(shù)量關系,并說明理由.
(3)當點D運動到點C的右側時,其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關系嗎?請畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB的頂點O與原點重合,直角頂點A在x軸上,頂點B的坐標為(4,3),直線與x軸、y軸分別交于點D、E,交OB于點F.
(1)寫出圖中的全等三角形及理由;
(2)求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量樓的高度,自樓的頂部A看地面上的一點B,俯角為30°,已知地面上的這點與樓的水平距離BC為30m,那么樓的高度AC為m(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一節(jié)數(shù)學課上,老師布置了一道課堂練習:“如圖,在△ABC中,∠B=∠C,求證:AB=AC“,小明發(fā)現(xiàn),他取BC的中點D,連接AD后,無法證明△ABD≌△ACD,故舉手提問老師,老師聽了他的困惑,告訴他只要再作兩條垂線段就可以證明了,你知道如何繼續(xù)證明嗎?請你寫下完整的證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①是一張∠AOB=45°的紙片折疊后的圖形,P、Q分別是邊OA、OB上的點,且OP=2cm.將∠AOB沿PQ折疊,點O落在紙片所在平面內的C處(點C在∠AOB的內部或一邊上).
(1)當PC∥QB時,OQ= cm.
(2)當折疊后重疊部分為等腰三角形時,畫出示意圖,寫出OQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進A,B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機進價多500元,每部A型號手機的售價是2500元,每部B型號手機的售價是2100元.
(1)若商場用50000元共購進A型號手機10部,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元?
(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機共40部,且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍.
①該商場有哪幾種進貨方式?
②該商場選擇哪種進貨方式,獲得的利潤最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com