精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知拋物線y=ax2+2x+c與y軸交于點A(0,6),與x軸交于點B(6,0),點P是線段AB上方拋物線上的一個動點.

(1)求這條拋物線的表達式及其頂點坐標;
(2)當點P移動到拋物線的什么位置時,使得∠PAB=75°,求出此時點P的坐標;
(3)當點P從A點出發(fā)沿線段AB上方的拋物線向終點B移動,在移動中,點P的橫坐標以每秒1個單位長度的速度變動,與此同時點M以每秒1個單位長度的速度沿AO向終點O移動,點P,M移動到各自終點時停止,當兩個移點移動t秒時,求四邊形PAMB的面積S關于t的函數表達式,并求t為何值時,S有最大值,最大值是多少?

【答案】
(1)

解:根據題意,把A(0,6),B(6,0)代入拋物線解析式可得 ,解得 ,

∴拋物線的表達式為y=﹣ x2+2x+6,

∵y=﹣ x2+2x+6=﹣ (x﹣2)2+8,

∴拋物線的頂點坐標為(2,8)


(2)

解:如圖1,過P作PC⊥y軸于點C,

∵OA=OB=6,

∴∠OAB=45°,

∴當∠PAB=75°時,∠PAC=60°,

∴tan∠PAC= ,即 = ,

設AC=m,則PC= m,

∴P( m,6+m),

把P點坐標代入拋物線表達式可得6+m=﹣ m)2+2 m+6,解得m=0或m= ,

經檢驗,P(0,6)與點A重合,不合題意,舍去,

∴所求的P點坐標為(4﹣ , +


(3)

解:當兩個支點移動t秒時,則P(t,﹣ t2+2t+6),M(0,6﹣t),

如圖2,作PE⊥x軸于點E,交AB于點F,則EF=EB=6﹣t,

∴F(t,6﹣t),

∴FP= t2+2t+6﹣(6﹣t)=﹣ t2+3t,

∵點A到PE的距離竽OE,點B到PE的距離等于BE,

∴SPAB= FPOE+ FPBE= FP(OE+BE)= FPOB= ×(﹣ t2+3t)×6=﹣ t2+9t,且SAMB= AMOB= ×t×6=3t,

∴S=S四邊形PAMB=SPAB+SAMB=﹣ t2+12t=﹣ (t﹣4)2+24,

∴當t=4時,S有最大值,最大值為24


【解析】(1)由A、B坐標,利用待定系數法可求得拋物線的表達式,化為頂點式可求得頂點坐標;(2)過P作PC⊥y軸于點C,由條件可求得∠PAC=60°,可設AC=m,在Rt△PAC中,可表示出PC的長,從而可用m表示出P點坐標,代入拋物線解析式可求得m的值,即可求得P點坐標;(3)用t可表示出P、M的坐標,過P作PE⊥x軸于點E,交AB于點F,則可表示出F的坐標,從而可用t表示出PF的長,從而可表示出△PAB的面積,利用S四邊形PAMB=SPAB+SAMB , 可得到S關于t的二次函數,利用二次函數的性質可求得其最大值.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

(1)求證:PC是⊙O的切線;
(2)求證:BC= AB;
(3)點M是 的中點,CM交AB于點N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=kx+b的圖象與反比例函數y= 的圖象在第一象限交于點A(4,2),與y軸的負半軸交于點B,且OB=6,
(1)求函數y= 和y=kx+b的解析式.
(2)已知直線AB與x軸相交于點C,在第一象限內,求反比例函數y= 的圖象上一點P,使得SPOC=9.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AD=AC,AD⊥AC,E是AB的中點,F是AC延長線上一點.

(1)若ED⊥EF,求證:ED=EF;
(2)在(1)的條件下,若DC的延長線與FB交于點P,試判定四邊形ACPE是否為平行四邊形?并證明你的結論(請先補全圖形,再解答);
(3)若ED=EF,ED與EF垂直嗎?若垂直給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了綠化環(huán)境,育英中學八年級三班同學都積極參加植樹活動,今年植樹節(jié)時,該班同學植樹情況的部分數據如圖所示,請根據統(tǒng)計圖信息,回答下列問題:
(1)八年級三班共有多少名同學?
(2)條形統(tǒng)計圖中,m= , n=
(3)扇形統(tǒng)計圖中,試計算植樹2棵的人數所對應的扇形圓心角的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD∥BC,AC=8,BD=6,.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點,與x軸相交于C點,△BOC的面積是 .若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線y= (x>0)的交點有(
A.0個
B.1個
C.2個
D.0個,或1個,或2個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x的頂點為A,直線y=x﹣2與拋物線交于B,C兩點.


(1)求A,B,C三點的坐標;
(2)作CD⊥x軸于點D,求證:△ODC∽△ABC;

(3)若點P為拋物線上的一個動點,過點P作PM⊥x軸于點M,則是否還存在除C點外的其他位置的點,使以O,P,M為頂點的三角形與△ABC相似?若存在,請求出這樣的P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+4的圖象過A(﹣1,0),B(4,0)兩點,與y軸交于點C,作直線BC,動點P從點C出發(fā),以每秒 個單位長度的速度沿CB向點B運動,運動時間為t秒,當點P與點B重合時停止運動.

(1)求拋物線的表達式;
(2)如圖2,當t=1時,求SACP的面積;
(3)如圖3,過點P向x軸作垂線分別交x軸,拋物線于E、F兩點.
①求PF的長度關于t的函數表達式,并求出PF的長度的最大值;
②連接CF,將△PCF沿CF折疊得到△P′CF,當t為何值時,四邊形PFP′C是菱形?

查看答案和解析>>

同步練習冊答案