【題目】如圖,在矩形ABCD中,邊AB的長為3,點E,F分別在AD,BC上,連接BE,DF,EF,BD,若四邊形BEDF是菱形,且EF=AE+FC,則邊BC的長為( )
A. 2 B. 6 C. 3 D.
【答案】C
【解析】根據矩形的性質和菱形的性質得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因為四邊形BEDF是菱形,所以BE,AE可求出進而可求出BC的長.
解:∵四邊形ABCD是矩形,
∴∠A=90°,
即BA⊥BF,
∵四邊形BEDF是菱形,
∴EF⊥BD,∠EBO=∠DBF,
∵EF=AE+FC,AE=CF,EO=FO
∴AE=EO=CF=FO,
∴AB=BO=3,∠ABE=∠EBO,
∴∠ABE=∠EBD=∠DBC=30°,
在Rt△BAE中,設AE=x,則BE=2x,由勾股定理得,
∴AB2+AE2=BE2,即32+x2=(2x)2,
BE=2,
∴BF=BE=2,
∴CF=AE=,
∴BC=BF+CF=3,
故選C.
“點睛”本題考查了矩形的性質、菱形的性質以及在直角三角形中30°角所對的直角邊時斜邊的一半,解題的關鍵是求出∠ABE=∠EBD=∠DBC=30°.
科目:初中數學 來源: 題型:
【題目】我市計劃用三年時間對全市學校的設施和設備進行全面改造,2015年市政府已投資5億元人民幣,若每年投資的增長率相同,2017年投資7.2億元人民幣,那么每年投資的增長率為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知Rt△ABC的三邊分別為a、b、c,則下列結論不可能成立的是( )
A.a2﹣b2=c2B.∠A﹣∠B=∠C
C.∠A:∠B:∠C=3:4:5D.a:b:c=7:24:25
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用配方法解方程x2+4x+1=0,配方后的方程是( 。
A. (x+2)2=5 B. (x﹣2)2=3 C. (x﹣2)2=5 D. (x+2)2=3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2 。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com