試題分析:(1)連接AO、BO,過點A作AE⊥DC于點E,過點O作ON⊥DC于點N,ON交⊙O于點M,交AB于點F,則OF⊥AB.由OA =" OB" = 5m,AB = 8m,即可得到
,∠AOB = 2∠AOF.在Rt△AOF中,根據(jù)∠AOF的正弦函數(shù)即可求得∠AOF 的度數(shù),從而求得結果;
(2)先根據(jù)勾股定理求的OF,即可得到FN,再根據(jù)等腰梯形的性質(zhì)可得AE =" FN" = 3m,DC =" AB" + 2DE.解Rt△ADE即可得到DE = 2m,DC = 12m,根據(jù)
即可求得結果.
(1)連接AO、BO,過點A作AE⊥DC于點E,過點O作ON⊥DC于點N,ON交⊙O于點M,交AB于點F,則OF⊥AB.
∵OA =" OB" = 5m,AB = 8m,
∴
,∠AOB = 2∠AOF.
在Rt△AOF中,sin∠AOF =
=" 0.8" = sin53°.
∴∠AOF = 53°,則∠AOB = 106°.即弧AB度數(shù)為106°;
(2)∵
,由題意得MN = 1m,
∴
.
∵四邊形ABCD是等腰梯形,AE⊥DC,F(xiàn)N⊥AB,
∴AE =" FN" = 3m,DC =" AB" + 2DE.
在Rt△ADE中,
,
∴DE = 2m,DC = 12m.
∴
答:U型槽的橫截面積約為20m
2.
點評:根據(jù)題意作出輔助線,構造出直角三角形及等腰梯形,再利用勾股定理進行求解是解此題的關鍵.