【題目】如圖,分別以 Rt△ ABC 的直角邊 AC 及斜邊 AB 向外作等邊△ ACD,等邊△ ABE.已知∠ABC=60°,EF⊥AB,垂足為 F,連接 DF.
(1)證明:△ACB≌△EFB;
(2)求證:四邊形 ADFE 是平行四邊形.
【答案】(1)見詳解;(2)見詳解.
【解析】
(1)由△ABE是等邊三角形可知:AB=BE,∠EBF=60°,于是可得到∠EFB=∠ACB=90°,∠EBF=∠ABC,接下來依據AAS證明△ABC≌△EBF即可;
(2)由△ABC≌△EBF可得到EF=AC,由△ACD是的等邊三角形進而可證明AC=AD=EF,然后再證明∠BAD=90°,可證明EF∥AD,故此可得到四邊形EFDA為平行四邊形.
解:(1)證明:∵△ABE是等邊三角形,EF⊥AB,
∴∠EBF=60°,AE=BE,∠EFB=90°.
又∵∠ACB=90°,∠ABC=60°,
∴∠EFB=∠ACB,∠EBF=∠ABC.
∵BE=BA,
∴△ABC≌△EBF(AAS).
(2)證明:∵△ABC≌△EBF,
∴EF=AC.
∵△ACD是的等邊三角形,
∴AC=AD=EF,∠CAD=60°,
又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,
∴∠BAD=∠BAC+∠CAD=90°,
∴∠EFA=∠BAD=90°,
∴EF∥AD.
又∵EF=AD,
∴四邊形EFDA是平行四邊形.
科目:初中數學 來源: 題型:
【題目】如圖,一次函數與反比例函數的圖象交于A(2,3),B(-3,n)兩點.
(1)求一次函數與反比例函數的表達式;
(2)根據所給條件,請直接寫出不等式<的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,AC=1,BC=2,CD平分∠ACB交邊AB與點D,P是射線CD上一點,聯結AP.
(1)求線段CD的長;
(2)當點P在CD的延長線上,且∠PAB=45°時,求CP的長;
(3)記點M為邊AB的中點,聯結CM、PM,若△CMP是等腰三角形,求CP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個反比例函數y=,y=在第一象限內的圖象如圖所示,點P1,P2,P3,....,P99,在反比例函數y=圖象上,它們的橫坐標分別是x1,x2,x3,....,x99,縱坐標分別是1,3,5,·…·,共99個連續(xù)奇數過點P1,P2,P3,…,P99分別作y軸的平行線線,與y=的圖象交點依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),.....,Q99(x99,y99),則y99=______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,,BE與CF交于點D,則對于下列結論:≌;≌;≌;在的平分線上其中正確的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于三個數a,b,c,用M{a,b,c}表示這三個數的平均數,用min{a,b,c}表示這三個數中最小的數.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示雙曲線y= 與 分別位于第三象限和第二象限,A是y軸上任意一點,B是上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內,y隨x的增大而減小;②若點B的橫坐標為-3,則C點的坐標為(-3, );③k=4;④△ABC的面積為定值7.正確的有( )
A. I個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形 ABCD 中, ABC 90, CD AD , BE AD , AD2 CD2 2 AB2,若四邊形 ABCD 的面積為18,則 BE 的長為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com