如圖,AB是半圓O的直徑,點(diǎn)P在AB的延長線上,PC切半圓O于點(diǎn)C,連接AC.若∠CPA=20°,則∠A=    °.
【答案】分析:連接OC,由PC為圓O的切線,利用切線的性質(zhì)得到OC與CP垂直,在直角三角形OPC中,利用兩銳角互余根據(jù)∠CPA的度數(shù)求出∠COP的度數(shù),再由OA=OC,利用等邊對等角得到∠A=∠OCA,利用外角的性質(zhì)即可求出∠A的度數(shù).
解答:解:連接OC,
∵PC切半圓O于點(diǎn)C,
∴PC⊥OC,即∠PCO=90°,
∵∠CPA=20°,
∴∠POC=70°,
∵OA=OC,
∴∠A=∠OCA=35°.
故答案為:35
點(diǎn)評:此題考查了切線的性質(zhì),等腰三角形的性質(zhì),以及外角性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點(diǎn)P從點(diǎn)B開始沿BA邊向點(diǎn)A以1cm/s的速度移動,若AB長為10cm,點(diǎn)O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經(jīng)過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點(diǎn)B,OC與弦AD平行交BM于點(diǎn)C.
(1)求證:CD是半圓O的切線;
(2)若AB的長為4,點(diǎn)D在半圓O上運(yùn)動,當(dāng)AD的長為1時,求點(diǎn)A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點(diǎn)D是半圓上一動點(diǎn),AB=10,AC=8,當(dāng)△ACD是等腰三角形時,點(diǎn)D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,以O(shè)A為直徑的半圓O′與弦AC交于點(diǎn)D,O′E∥AC,并交OC于點(diǎn)E,則下列結(jié)論:①S△O′OE=
1
2
S△AOC2;②點(diǎn)D時AC的中點(diǎn);③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,過點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,F(xiàn)為垂足,交AC于點(diǎn)C使∠BED=∠C.請判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案