【題目】某工人打算用不銹鋼條加工一個面積為0.8平方米的矩形模具.假設(shè)模具的長與寬分別為x米和y米.
(1)你能寫出y與x之間的函數(shù)解析式嗎?
(2)變量y與x是什么函數(shù)關(guān)系?
(3)已知這種不銹鋼條每米6元,若想使模具的長比寬多1.6米,則加工這個模具共需花多少錢?
【答案】(1) y=(x>0);(2)變量y與x是反比例函數(shù)關(guān)系;(3)加工這個模具共需花費為28.8元.
【解析】
(1)利用矩形面積公式得出即可;
(2)利用反比例函數(shù)的定義得出答案;
(3)利用長與寬的關(guān)系結(jié)合矩形面積求出長和寬,然后求出矩形周長,即可得到結(jié)論.
(1)由題意可得:xy=0.8,則y;
(2)變量y與x之間是反比例函數(shù)關(guān)系;
(3)設(shè)長為xm,則寬為(x﹣1.6)m,根據(jù)題意得:
x(x﹣1.6)=0.8
解得;x1=2,x2=﹣0.4(不合題意舍去).
則長為2m,寬為0.4m,故矩形的周長為:4.8m.
故加工這個模具共需花4.8×6=28.8(元).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+mx+n交x軸于點A(﹣2,0)和點B,交y軸于點C(0,2).
(1)求拋物線的函數(shù)表達式;
(2)若點M在拋物線上,且S△AOM=2S△BOC,求點M的坐標(biāo);
(3)如圖2,設(shè)點N是線段AC上的一動點,作DN⊥x軸,交拋物線于點D,求線段DN長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程kx2+(2k﹣1)x+k﹣1=0(1)只有整數(shù)根,且關(guān)于y的一元二次方程(k﹣1)y2﹣3y+m=0(2)有兩個實數(shù)根y1和y2
(1)當(dāng)k為整數(shù)時,確定k的值;
(2)在(1)的條件下,若m>﹣2,用關(guān)于m的代數(shù)式表示y12+y22.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3cm,以B為圓心,1cm長為半徑畫⊙B,點P在⊙B上移動,連接AP,并將AP繞點A逆時針旋轉(zhuǎn)90°至AP′,連接BP′.在點P移動的過程中,BP′長度的最小值為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)A棟樓在B棟樓的南側(cè),兩樓高度均為90m,樓間距為MN.春分日正午,太陽光線與水平面所成的角為55.7°,A棟樓在B棟樓墻面上的影高為DM;冬至日正午,太陽光線與水平面所成的角為30°,A棟樓在B棟樓墻面上的影高為CM.已知CD=44.5m.
(1)求樓間距MN;
(2)若B號樓共30層,每層高均為3m,則點C位于第幾層?(參考數(shù)據(jù):tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+3x﹣8的圖象與x軸交于A,B兩點(點A在點B的右側(cè)),與y軸交于點C.
(1)求直線BC的解析式;
(2)點F是直線BC下方拋物線上的一點,當(dāng)△BCF的面積最大時,在拋物線的對稱軸上找一點P,使得△BFP的周長最小,請求出點F的坐標(biāo)和點P的坐標(biāo);
(3)在(2)的條件下,是否存在這樣的點Q(0,m),使得△BFQ為等腰三角形?如果有,請直接寫出點Q的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ﹣sinαsinβ②
tan(α+β)=③
利用這些公式可將某些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如:
tan105°=tan(45°+60°)==﹣(2+).
根據(jù)上面的知識,你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實際問題:
如圖,直升飛機在一建筑物CD上方A點處測得建筑物頂端D點的俯角α=60°,底端C點的俯角β=75°,此時直升飛機與建筑物CD的水平距離BC為42m,求建筑物CD的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段 AB=4,M 為 AB 的中點,動點 P 到點 M 的距離是 1,連接 PB,線段
PB 繞點 P 逆時針旋轉(zhuǎn) 90°得到線段 PC,連接 AC,則線段 AC 長度的最大值是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com