【題目】如圖,線段 是 的直徑,弦 于點(diǎn) ,點(diǎn) 是弧 上任意一點(diǎn), .
(1)求 的半徑 的長(zhǎng)度;
(2)求 ;
(3)直線 交直線 于點(diǎn) ,直線 交 于點(diǎn) ,連接 交 于點(diǎn) ,求 的值.
【答案】
(1)
解:連接OC,在Rt△COH中,
∵CH=4,OH=r-2,OC=r.
∴ (r-2)2+42=r2.
∴ r=5
(2)
解:∵弦CD與直徑AB垂直,
∴ 弧AD=弧AC=弧CD.
∴ ∠AOC=∠COD.
∴∠CMD=∠COD.
∴ ∠CMD=∠AOC.
∴sin∠CMD=sin∠AOC.
在Rt△COH中,
∴sin∠AOC==.
∴sin∠CMD=.
(3)
解:連接AM,
∴∠AMB=90°.
在Rt△AMB中,
∴∠MAB+∠ABM=90°.
在Rt△EHB中,
∴∠E+∠ABM=90°.
∴∠MAB=∠E.
∵弧BM=弧BM,
∴∠MNB=∠MAB=∠E.
∵∠EHM=∠NHF.
∴△EHM∽△NHF
∴=.
∴HE.HF=HM.HN.
∵AB與MN交于點(diǎn)H,
∴HM.HN=HA.HB=HA.(2r-HA)=2×(10-2)=16.
∴HE.HF=16.
【解析】(1)連接OC,在Rt△COH中,根據(jù)勾股定理即可r.
(2)根據(jù)垂徑定理即可得出弧AD=弧AC=弧CD;再根據(jù)同弧所對(duì)的圓周角等于圓心角的一半;得出 ∠CMD=∠AOC;在Rt△COH中,根據(jù)銳角三角函數(shù)定義即可得出答案.
(3)連接AM,則∠AMB=90°.在Rt△AMB中和Rt△EHB中,根據(jù)同角的余角相等即可∠MAB=∠E;再由三角形相似的判定和性質(zhì)即可得HE.HF=HM.HN.
又由AB與MN交于點(diǎn)H,得出HM.HN=HA.HB=HA.(2r-HA)=2×(10-2)=16;從而求出HE.HF=16.
【考點(diǎn)精析】關(guān)于本題考查的余角和補(bǔ)角的特征和勾股定理的概念,需要了解互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無(wú)關(guān);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形是將正三角形按一定規(guī)律排列,則第4個(gè)圖形中所有正三角形的個(gè)數(shù)有( )
A.160
B.161
C.162
D.163
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“兩直線平行,內(nèi)錯(cuò)角的平分線互相平行”是真命題嗎?如果是,請(qǐng)給出證明;如果不是,請(qǐng)舉出反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)給出的圖形回答下列問(wèn)題:
(1)∠1表示成∠A,這樣的表示方法是否正確?如果不正確,應(yīng)該怎樣改正?
(2)圖中哪個(gè)角可以用一個(gè)字母來(lái)表示?
(3)以A為頂點(diǎn)的角有幾個(gè)?請(qǐng)表示出來(lái);
(4)∠ADC與∠ACD是同一個(gè)角嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 中, , , , , ,點(diǎn) 在 上, 交 于點(diǎn) , 交 于點(diǎn) ,當(dāng) 時(shí), .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“經(jīng)過(guò)已知直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過(guò)程:
已知:直線l和l外一點(diǎn)P.(如圖1)
求作:直線l的垂線,使它經(jīng)過(guò)點(diǎn)P.
作法:如圖2
(1)在直線l上任取兩點(diǎn)A,B;
(2)分別以點(diǎn)A,B為圓心,AP,BP長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)Q;
(3)作直線PQ.
所以直線PQ就是所求的垂線.
請(qǐng)回答:該作圖的依據(jù)是_________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE.
⑴若∠BAE=40°,求∠C的度數(shù);
⑵若△ABC周長(zhǎng)13cm,AC=6cm,求DC長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,則∠ACB的度數(shù)為 ;
②若∠ACB=140°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說(shuō)明理由.
(3)當(dāng)∠ACE<180°且點(diǎn)E在直線AC的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請(qǐng)直接寫出∠ACE角度所有可能的值(不必說(shuō)明理由);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F.
(1)求證:△BED≌△CFD;
(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com