【題目】下列說法正確的是(
A.π一定是正數(shù)
B.﹣a一定是負(fù)數(shù)
C.+a一定是正數(shù)
D.3+a一定是正數(shù)

【答案】A
【解析】解:∵a為任意數(shù),∴﹣a,+a,3+a的正負(fù)性沒法判斷,而π是常數(shù),是正數(shù); 故選A.
【考點精析】本題主要考查了正數(shù)與負(fù)數(shù)的相關(guān)知識點,需要掌握大于0的數(shù)叫正數(shù);小于0的數(shù)叫負(fù)數(shù);0既不是正數(shù)也不是負(fù)數(shù);正數(shù)負(fù)數(shù)表示具有相反意義的量才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直徑坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象上有一點A(m,4),過點A作AB⊥x軸于點B,將點B向右平移2個單位長度得到點C,過點C作y軸的平行線交反比例函數(shù)的圖象于點D,CD=

(1)求點D的橫坐標(biāo)(用含m的式子表示);

(2)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)(﹣3a2b32(﹣a3b25÷a2b4;
(2)( 2012×(﹣1.5)2013÷(﹣1)2014;
(3)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y;
(4)(5x+7y﹣3)(5x﹣7y+3);
(5)(a+2b﹣c)2;
(6)(x+2y)2(x﹣2y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算a3a2正確的是( 。
A.a
B.a5
C.a6
D.a9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,如果兩個三角形全等,則它們面積相等,而兩個不全等的三角形,在某些情況下,可通過證明等底等高來說明它們的面積相等.已知△ABC與△DEC是等腰直角三角形,∠ACB=∠DCE=90°,連接AD、BE.

(1)如圖1,當(dāng)∠BCE=90°時,求證:SACD=SBCE
(2)如圖2,當(dāng)0°<∠BCE<90°時,上述結(jié)論是否仍然成立?如果成立,請證明;如果不成立,說明理由.
(3)如圖3,在(2)的基礎(chǔ)上,作CF⊥BE,延長FC交AD于點G,求證:點G為AD中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個定點坐標(biāo)分別為A﹣1,3),B﹣1,1),C﹣32).

1)請畫出△ABC關(guān)于y軸對稱的△A1B1C1;

2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內(nèi)畫出△A2B2C2,并求出SA1B1C1SA2B2C2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x4)(x2)的對稱軸方程為(

A.直線x=-2B.直線x=1C.直線x=-4D.直線x=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車經(jīng)銷商購進兩種型號的低排量汽車,其中型汽車的進貨單價比型汽車的進貨單價多2萬元,經(jīng)銷商花50萬元購進型汽車的數(shù)量與花40萬元購進型汽車的數(shù)量相等.銷售中發(fā)現(xiàn)型汽車的每周銷量(臺)與售價(萬元/臺)滿足函數(shù)關(guān)系式 型汽車的每周銷量(臺)與售價(萬元/臺)滿足函數(shù)關(guān)系式

1)求兩種型號的汽車的進貨單價;

2)已知型汽車的售價比型汽車的售價高2萬元/臺,設(shè)型汽車售價為萬元/臺.每周銷售這兩種車的總利潤為萬元,求的函數(shù)關(guān)系式, 兩種型號的汽車售價各為多少時,每周銷售這兩種車的總利潤最大?最大總利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1) ;

(2) .

查看答案和解析>>

同步練習(xí)冊答案