【題目】如圖,在平面直角坐標系中,一次函數(shù)y=mx+n(m≠0)的圖象與y軸交于點C,與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點,點A在第一象限,縱坐標為4,點B在第三象限,BM⊥x軸,垂足為點M,BM=OM=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)連接OB,MC,求四邊形MBOC的面積.
【答案】(1)y=,y=2x+2;(2)四邊形MBOC的面積是4.
【解析】
(1)根據(jù)題意可以求得點B的坐標,從而可以求得反比例函數(shù)的解析式,進而求得點A的坐標,從而可以求得一次函數(shù)的解析式;
(2)根據(jù)(1)中的函數(shù)解析式可以求得點C,從而可以求得四邊形MBOC是平行四邊形,根據(jù)面積公式即可求得.
解:(1)∵BM=OM=2,
∴點B的坐標為(﹣2,﹣2),
∵反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B,
則﹣2=,得k=4,
∴反比例函數(shù)的解析式為y=,
∵點A的縱坐標是4,
∴4=,得x=1,
∴點A的坐標為(1,4),
∵一次函數(shù)y=mx+n(m≠0)的圖象過點A(1,4)、點B(﹣2,﹣2),
∴,解得,
即一次函數(shù)的解析式為y=2x+2;
(2)∵y=2x+2與y軸交于點C,
∴點C的坐標為(0,2),
∵點B(﹣2,﹣2),點M(﹣2,0),
∴OC=MB=2,
∵BM⊥x軸,
∴MB∥OC,
∴四邊形MBOC是平行四邊形,
∴四邊形MBOC的面積是:OMOC=4.
科目:初中數(shù)學 來源: 題型:
【題目】直線:,與軸,軸分別交于兩點,拋物線:,經(jīng)過點,且與軸的另一個交點為點.
(1)若,求此時拋物線的解析式、頂點坐標及點坐標;
(2)在直線與拋物線圍成的封閉圖形邊界上,橫、縱坐標均為整數(shù)的點稱為“神秘點”,求出在(l)的條件下“神秘點”的個數(shù);
(3)①直線與軸的交點的坐標會變嗎?說明理由;
②若拋物線與直線在的范圍內(nèi)有唯一公共點,請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關系如圖所示.有下列結論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當小帶和小路的車相距50 km時,t=或t=.其中正確的結論有( )
A. ①②③④B. ①②④
C. ①②D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小松想利用所學數(shù)學知識測量學校旗桿高度,如圖,旗桿AB的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好在C處且與地面成60°角,小松拿起繩子末端,后退至E處,并拉直繩子,此時繩子末端D距離地面2m且繩子與水平方向成45°角.求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一塊長為40cm,寬為30cm的矩形硬紙板的四角剪去四個相同小正方形,然后把紙板的四邊沿虛線折起,并用膠帶粘好,即可做成一個無蓋紙盒.若該無蓋紙盒的底面積為600cm2,設剪去小正方形的邊長為xcm,則可列方程為( )
A.(30﹣2x)(40﹣x)=600B.(30﹣x)(40﹣x)=600
C.(30﹣x)(40﹣2x)=600D.(30﹣2x)(40﹣2x)=600
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一張矩形紙條ABCD,AB=5cm,BC=2cm,點M,N分別在邊AB,CD上,CN=1cm.現(xiàn)將四邊形BCNM沿MN折疊,使點B,C分別落在點B',C'上.當點B'恰好落在邊CD上時,線段BM的長為_____cm;在點M從點A運動到點B的過程中,若邊MB'與邊CD交于點E,則點E相應運動的路徑長為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠CBG=∠A,CD為直徑,OC與AB相交于點E,過點E作EF⊥BC,垂足為F,延長CD交GB的延長線于點P,連接BD.
(1)求證:PG與⊙O相切;
(2)若=,求的值;
(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com