【題目】如圖,在平面直角坐標系中,一次函數(shù)ymx+nm0)的圖象與y軸交于點C,與反比例函數(shù)yk0)的圖象交于AB兩點,點A在第一象限,縱坐標為4,點B在第三象限,BMx軸,垂足為點MBMOM2

1)求反比例函數(shù)和一次函數(shù)的解析式.

2)連接OB,MC,求四邊形MBOC的面積.

【答案】1y,y2x+2;(2)四邊形MBOC的面積是4

【解析】

1)根據(jù)題意可以求得點B的坐標,從而可以求得反比例函數(shù)的解析式,進而求得點A的坐標,從而可以求得一次函數(shù)的解析式;

2)根據(jù)(1)中的函數(shù)解析式可以求得點C,從而可以求得四邊形MBOC是平行四邊形,根據(jù)面積公式即可求得.

解:(1)∵BMOM2,

∴點B的坐標為(﹣2,﹣2),

∵反比例函數(shù)yk0)的圖象經(jīng)過點B,

則﹣2,得k4,

∴反比例函數(shù)的解析式為y

∵點A的縱坐標是4,

4,得x1,

∴點A的坐標為(1,4),

∵一次函數(shù)ymx+nm0)的圖象過點A14)、點B(﹣2,﹣2),

,解得,

即一次函數(shù)的解析式為y2x+2

2)∵y2x+2y軸交于點C,

∴點C的坐標為(02),

∵點B(﹣2,﹣2),點M(﹣20),

OCMB2,

BMx軸,

MBOC,

∴四邊形MBOC是平行四邊形,

∴四邊形MBOC的面積是:OMOC4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線:,與軸,軸分別交于兩點,拋物線:,經(jīng)過點,且與軸的另一個交點為點

1)若,求此時拋物線的解析式、頂點坐標及點坐標;

2)在直線與拋物線圍成的封閉圖形邊界上,橫、縱坐標均為整數(shù)的點稱為“神秘點”,求出在(l)的條件下“神秘點”的個數(shù);

3)①直線軸的交點的坐標會變嗎?說明理由;

②若拋物線與直線的范圍內(nèi)有唯一公共點,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達式;

2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關系如圖所示.有下列結論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當小帶和小路的車相距50 km時,tt.其中正確的結論有(  )

A. ①②③④B. ①②④

C. ①②D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小松想利用所學數(shù)學知識測量學校旗桿高度,如圖,旗桿AB的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好在C處且與地面成60°角,小松拿起繩子末端,后退至E處,并拉直繩子,此時繩子末端D距離地面2m且繩子與水平方向成45°角.求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一塊長為40cm,寬為30cm的矩形硬紙板的四角剪去四個相同小正方形,然后把紙板的四邊沿虛線折起,并用膠帶粘好,即可做成一個無蓋紙盒.若該無蓋紙盒的底面積為600cm2,設剪去小正方形的邊長為xcm,則可列方程為(  )

A.302x)(40x)=600B.30x)(40x)=600

C.30x)(402x)=600D.302x)(402x)=600

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點上一點,的平分線于點,過點的延長線于點

1)求證:的切線;

2)過點于點,連接.若,,求的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一張矩形紙條ABCDAB5cm,BC2cm,點M,N分別在邊AB,CD上,CN1cm.現(xiàn)將四邊形BCNM沿MN折疊,使點BC分別落在點B',C'上.當點B'恰好落在邊CD上時,線段BM的長為_____cm;在點M從點A運動到點B的過程中,若邊MB'與邊CD交于點E,則點E相應運動的路徑長為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點E,過點EEFBC,垂足為F,延長CDGB的延長線于點P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.

查看答案和解析>>

同步練習冊答案