【題目】如圖,已知拋物線y=a(x+2)(x﹣4)(a為常數(shù),且a>0)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線y=﹣ x+b與拋物線的另一交點(diǎn)為D,且點(diǎn)D的橫坐標(biāo)為﹣5.
(1)求拋物線的函數(shù)表達(dá)式;
(2)P為直線BD下方的拋物線上的一點(diǎn),連接PD、PB,求△PBD面積的最大值;
(3)設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少?
【答案】
(1)
解:拋物線y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,
∴A(﹣2,0),B(4,0).
∵直線y=﹣ x+b經(jīng)過點(diǎn)B(4,0),
∴﹣ ×4+b=0,解得b= ,
∴直線BD解析式為:y=﹣ x+ ,
當(dāng)x=﹣5時(shí),y=3 ,
∴D(﹣5,3 ),
∵點(diǎn)D(﹣5,3 )在拋物線y=a(x+2)(x﹣4)上,
∴a(﹣5+2)(﹣5﹣4)=3 ,
∴a= .
∴拋物線的函數(shù)表達(dá)式為:y= x2﹣ x﹣
(2)
解:設(shè)P(m, m2﹣ m﹣ )
∴S△BPD= ×9[(﹣ m+ )﹣( m2﹣ m﹣ )]
=﹣ m2﹣ m+10
=﹣ (m+ )2+
∴△BPD面積的最大值為
(3)
解:如圖,
作DK∥AB,AH⊥DK,AH交直線BD于點(diǎn)F,
∵由(2)得,DN=3 ,BN=9,
∵∠DBA=30°,
∴∠BDH=30°,
∴FG=DF×sin30°= FD,
∴當(dāng)且僅當(dāng)AH⊥DK時(shí),AF+FH最小,
點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)為:t=AF+ FD=AF+FH,
∵lBD:y=﹣ x+ ,
∴Fx=Ax=﹣2,F(xiàn)(﹣2,2 )
∴當(dāng)F坐標(biāo)為(﹣2,2 )時(shí),用時(shí)最少
【解析】(1)首先求出點(diǎn)A、B坐標(biāo),然后求出直線BD的解析式,求得點(diǎn)D坐標(biāo),代入拋物線解析式,求得a的值;(2)用三角形的面積公式建立函數(shù)關(guān)系式,再確定出最大值;(3)由題意,動(dòng)點(diǎn)M運(yùn)動(dòng)的路徑為折線AF+DF,運(yùn)動(dòng)時(shí)間:t=AF+ DF.如圖,作輔助線,將AF+ DF轉(zhuǎn)化為AF+FG;再由垂線段最短,得到垂線段AH與直線BD的交點(diǎn),即為所求的F點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫縱坐標(biāo)分別為整數(shù)的點(diǎn),其順序?yàn)?/span>(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根據(jù)這個(gè)規(guī)律,第2 018個(gè)點(diǎn)的坐標(biāo)為( )
A. (45,9) B. (45,11) C. (45,7) D. (46,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B在線段AF上,分別以AB、BF為邊在線段AF的同側(cè)作正方形ABCD和正方形BFGE,連接CF和DE,CF交EG于H.
(1)若E是BC的中點(diǎn),求證:DE=CF;
(2)若∠CDE=30°,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,點(diǎn)D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點(diǎn)F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員在某次訓(xùn)練中各射擊10發(fā)子彈,成績?nèi)绫恚?/span>
甲 | 8 | 9 | 7 | 9 | 8 | 6 | 7 | 8 | 10 | 8 |
乙 | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | 7 | 10 |
且=8,S乙2=1.8,S甲2=1.2,根據(jù)上述信息完成下列問題:
(1)乙運(yùn)動(dòng)員射擊訓(xùn)練成績的眾數(shù)是 ,中位數(shù)是 .
(2)求甲運(yùn)動(dòng)員射擊成績的平均數(shù),并判斷甲、乙兩人在本次射擊成績的穩(wěn)定性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】坐標(biāo)平面內(nèi)有4個(gè)點(diǎn)A(0,2),B(-2,0),C(1,-1),D(3,1).
(1)建立坐標(biāo)系,描出這4個(gè)點(diǎn);
(2)順次連接A,B,C,D,組成四邊形ABCD,求四邊形ABCD的面積.
(3)線段AB,CD有什么關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點(diǎn)C坐標(biāo)為________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“智慧南京、綠色出行”,騎共享單車出行已經(jīng)成為一種時(shí)尚.記者隨機(jī)調(diào)查了一些騎共享單車的秦淮區(qū)市民,并將他們對(duì)各種品牌單車的選擇情況繪制成圖①和圖②的統(tǒng)計(jì)圖(A:摩拜單車;B:ofo單車;C:HelloBike).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)在圖①中,C部分所占扇形的圓心角度數(shù)為°;
(2)將圖②補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)某天該區(qū)48萬名騎共享單車的市民中有多少名選擇摩拜單車?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com