【題目】“智慧南京、綠色出行”,騎共享單車出行已經成為一種時尚.記者隨機調查了一些騎共享單車的秦淮區(qū)市民,并將他們對各種品牌單車的選擇情況繪制成圖①和圖②的統(tǒng)計圖(A:摩拜單車;B:ofo單車;C:HelloBike).請根據圖中提供的信息,解答下列問題:
(1)在圖①中,C部分所占扇形的圓心角度數(shù)為°;
(2)將圖②補充完整;
(3)根據抽樣調查結果,請你估計某天該區(qū)48萬名騎共享單車的市民中有多少名選擇摩拜單車?

【答案】
(1)30
(2)解:A為240﹣120﹣20=100(名).

;


(3)解:48× =20(萬名).

所以估計某天該區(qū)48萬名騎共享單車的市民中有20萬名選擇摩拜單車.


【解析】(1)根據B組有120人,所占的百分比是50%,即可求得調查的總人數(shù),然后利用360°乘以對應的比例求得C組對應扇形的圓心角的度數(shù);(2)利用總人數(shù)減去其它組的人數(shù)即可求得A組的人數(shù),從而補全直方圖;(3)利用總人數(shù)乘以對應的比例求解.
【考點精析】本題主要考查了扇形統(tǒng)計圖和條形統(tǒng)計圖的相關知識點,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=a(x+2)(x﹣4)(a為常數(shù),且a>0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經過點B的直線y=﹣ x+b與拋物線的另一交點為D,且點D的橫坐標為﹣5.

(1)求拋物線的函數(shù)表達式;
(2)P為直線BD下方的拋物線上的一點,連接PD、PB,求△PBD面積的最大值;
(3)設F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當點F的坐標是多少時,點M在整個運動過程中用時最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】震災無情人有情.民政局將全市為四川受災地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件

(1)求打包成件的帳篷和食品各多少件?

(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性這批帳篷和食品全部運往受災地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來.

(3)在第(2)問的條件下,如果甲種貨車每輛付運輸費4000元,乙種貨車每輛付運輸費3600元.民政局應選擇哪種方案可使運輸費最少?最少運輸費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,D為BC邊上一點.

(1)如圖①,在Rt△ABC中,∠C=90°,將△ABC沿著AD折疊,點C落在AB邊上.請用直尺和圓規(guī)作出點D(不寫作法,保留作圖痕跡);
(2)如圖②,將△ABC沿著過點D的直線折疊,點C落在AB邊上的E處.
①若DE⊥AB,垂足為E,請用直尺和圓規(guī)作出點D(不寫作法,保留作圖痕跡);
②若AB=4 ,BC=6,∠B=45°,則CD的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接DE并延長至點F,使EF=DE,連接AF、DC.求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一位無線電愛好者把天線桿設在接收效果最佳的矩形屋頂之上.然后,他從桿頂?shù)轿蓓斔慕侵g安裝固定用的支撐線.有兩根相對的支撐線分別長7米和4米,另一根長1米,則最后一根的長度應為( )

A. 8 B. 9 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE.將△EDC繞點C按順時針方向旋轉,當△EDC旋轉到A,D,E三點共線時,線段BD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在解決線段數(shù)量關系問題中,如果條件中有角平分線,經常采用下面構造全等三角形的解決思路.如:在圖1中,若的平分線上一點,點上,此時,在 截取 ,連接,根據三角形全等的判定 ,容易構造出全等三角形⊿和⊿,參考上面的方法,解答下列問題:

如圖2,在非等邊⊿中, , 分別是的平分線,且交于點.求證: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線AB:y=﹣x+b分別與x,y軸交于A(6,0)、B 兩點,過點B的直線交x軸負半軸于C,且OB:OC=3:1.

(1)求點B的坐標.

(2)求直線BC的解析式.

(3)直線 EF 的解析式為y=x,直線EFAB于點E,交BC于點 F,求證:SEBO=SFBO

查看答案和解析>>

同步練習冊答案