【題目】若,則下列不等式中不一定成立的是( )
A.B.C.D.
【答案】D
【解析】
A,在不等式x>y兩邊都加上1,不等號(hào)的方向不變,即可判斷A的正確性,選項(xiàng)B,在不等式x>y兩邊都乘上3,不等號(hào)的方向不變,即可判斷B的正確性;選項(xiàng)C,在不等式x>y兩邊都除以2,不等號(hào)的方向不變,即可判斷C的正確性,選項(xiàng)D,可舉例說明,例如當(dāng)x=1,y=-2時(shí),x>y,符號(hào)改變,故可判斷D的正確性,據(jù)此即可得到答案.
選項(xiàng)A,在不等式x>y兩邊都加上1,不等號(hào)的方向不變,故A正確;
選項(xiàng)B,在不等式x>y兩邊都乘上3,不等號(hào)的方向不變,故B正確;
選項(xiàng)C,在不等式x>y兩邊都除以2,不等號(hào)的方向不變,故C正確;
選項(xiàng)D,例如,當(dāng)x=1,y=-2時(shí),x>y,但,故D錯(cuò)誤.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2-mx+-=0的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么□ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購(gòu)買若干個(gè)籃球和足球(每個(gè)籃球的價(jià)格相同,每個(gè)足球的價(jià)格相同).若購(gòu)買個(gè)籃球和個(gè)足球共需元,購(gòu)買個(gè)籃球和個(gè)足球共需元.
求籃球、足球的單價(jià)各是多少元;
根據(jù)學(xué)校實(shí)際需要,需一次性購(gòu)買籃球和足球共個(gè).要求購(gòu)買籃球和足球的總費(fèi)用不超過元,則該校最多可以購(gòu)買多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校要開展校園藝術(shù)節(jié)活動(dòng),為了合理編排節(jié)目,對(duì)學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息,回答下列問題:
(1)本次共調(diào)查了_________名學(xué)生.
(2)在扇形統(tǒng)計(jì)圖中,“歌曲”所在扇形的圓心角等于_________度.
(3)補(bǔ)全條形統(tǒng)計(jì)圖(并標(biāo)注頻數(shù)).
(4)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛小品的人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校興趣小組想測(cè)量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長(zhǎng)為12米,它的坡度i=1:.在離C點(diǎn)40米的D處,用測(cè)角儀測(cè)得大樓頂端A的仰角為37°,測(cè)角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
【答案】33.3.
【解析】
試題分析:延長(zhǎng)AB交直線DC于點(diǎn)F,過點(diǎn)E作EH⊥AF,垂足為點(diǎn)H,在Rt△BCF中利用坡度的定義求得CF的長(zhǎng),則DF即可求得,然后在直角△AEH中利用三角函數(shù)求得AF的長(zhǎng),進(jìn)而求得AB的長(zhǎng).
試題解析:延長(zhǎng)AB交直線DC于點(diǎn)F,過點(diǎn)E作EH⊥AF,垂足為點(diǎn)H.
∵在Rt△BCF中, =i=1:,∴設(shè)BF=k,則CF=k,BC=2k.
又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.
答:大樓AB的高度約為33.3米.
考點(diǎn):1.解直角三角形的應(yīng)用-仰角俯角問題;2.解直角三角形的應(yīng)用-坡度坡角問題.
【題型】解答題
【結(jié)束】
24
【題目】為迎接安順市文明城市創(chuàng)建工作,某校八年一班開展了“社會(huì)主義核心價(jià)值觀、未成年人基本文明禮儀規(guī)范”的知識(shí)競(jìng)賽活動(dòng),成績(jī)分為A、B、C、D四個(gè)等級(jí),并將收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中所給出的信息,解答下列各題:
(1)求八年一班共有多少人;
(2)補(bǔ)全折線統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中等極為“D”的部分所占圓心角的度數(shù)為________;
(4)若等級(jí)A為優(yōu)秀,求該班的優(yōu)秀率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線l對(duì)稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對(duì)應(yīng))
(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,AD=8,F是AB的中點(diǎn).過點(diǎn)F作FE⊥AD,垂足為E.將△AEF沿點(diǎn)A到點(diǎn)B的方向平移,得到△A′E′F′.設(shè)P、P′分別是EF、E′F′的中點(diǎn),當(dāng)點(diǎn)A′與點(diǎn)B重合時(shí),四邊形PP′F′F的面積為( )
A. 8B. 4C. 12D. 8-8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)用列表法表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在反比例函數(shù)y=的圖象上的概率;
(3)求小明、小華各取一次小球所確定的數(shù)x,y滿足y<的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com