【題目】如圖,直線PQMN,點APQ上,直角BEF的直角邊BEMN上,且∠B=90°,BEF=30°.現(xiàn)將BEF繞點B以每秒的速度按逆時針方向旋轉(E,F(xiàn)的對應點分別是E′,F(xiàn)′),同時,射線AQ繞點A以每秒的速度按順時針方向旋轉(Q的對應點是Q′).設旋轉時間為t秒(0≤t≤45).

(1)MBF′=__.(用含t的代數(shù)式表示)

(2)在旋轉的過程中,若射線AQ′與邊E′F′平行時,則t的值為__

【答案】(90﹣t)°,6°42°

【解析】

(1)如圖1,由題意得:∠FBF'=t°,FBM=90°,根據(jù)互余的概念進行求解即可得;°;

(2)①如圖2、圖3,分兩種情況分別畫出圖形進行求解即可得.

(1)如圖1,由題意得:∠FBF'=t°,FBM=90°,

∴∠MBF'=90°﹣t°=(90﹣t)°,

故答案為:(90﹣t)°;

(2)①如圖2,AQ'E'F',

延長BE'AQ'C,則∠F'E'B=ACB=30°,

由題意得:∠EBE'=t°,QAQ'=4t°,

t+4t=30,

t=6°;

②如圖3,AQ'E'F',

延長BE',交PQD,交直線AQ'C,則∠F'E'B=ACD=30°,

由題意得:∠NBE'=t°,QAQ'=4t°,

∴∠ADB=NBE'=t°,

∵∠ADB=ACD+DAC,

30+180﹣4t=t,

t=42°,

綜上,在旋轉的過程中,若射線AQ′與邊E′F′平行時,則t的值為42°,

故答案為:42°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtACB中,∠ACB=90°,ABC的角平分線AD、BE相交于點P,過PPFADBC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;BF=BA;PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四個完全相同的小球上分別寫有:0, ,﹣5,π四個實數(shù),把它們全部裝入一個布袋里,從布袋里任意摸出1個球,球上的數(shù)是無理數(shù)的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察,在如圖所示的各圖中找對頂角(不含平角):

(1)如圖a,圖中共有_____對對頂角.

(2)如圖b,圖中共有_____對對頂角.

(3)如圖c,圖中共有_____對對頂角

(4)研究(1)~(3)小題中直線條數(shù)與對頂角的對數(shù)之間的關系,若有n條直線相交于一點,則可形成多少對對頂角?

(5)若有2000條直線相交于一點,則可形成多少對對頂角?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展陽光體育一小時活動,根據(jù)學校實際情況,決定開設A:踢毽子;B:籃球:C:跳繩;D:乒乓球四種運動項目.為了解學生最喜歡哪一種運動項目,隨機抽取了一部分學生進行調查,并將調查結果繪制成如兩個統(tǒng)計圖.請結合圖中的信息解答下列問題:

(1)本次共調查了多少名學生?

(2)請將兩個統(tǒng)計圖補充完整.

(3)求圖中“A”層次所在扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤1200元。設生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤為y (元)

(1)試寫出yx之間的函數(shù)關系式;

(2)求出自變量x的取值范圍;

(3)利用函數(shù)的性質說明哪種生產(chǎn)方案獲總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一果農(nóng)販賣的西紅柿,其重量與價錢成一次函數(shù)關系.小華向果農(nóng)買一竹籃的西紅柿,含竹籃稱得總重量為15公斤,付西紅柿的錢26元,若再加買0.5公斤的西紅柿,需多付1元,則空竹籃的重量為多少?( 。

A. 1.5 B. 2 C. 2.5 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如題,點是邊的中點,點是邊上的一個動點,作于點,的延長線交線段于點.

(1)如圖①,當點于點重合時,求證:;

(2),梯形的面積為,求的函數(shù)解析式,并寫出定義域.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將自然數(shù)按以下規(guī)律排列:

表中數(shù)2在第二行第一列,與有序數(shù)對(2,1)對應,數(shù)5與(1,3)對應,數(shù)14與(3,4)對應,根據(jù)這一規(guī)律,數(shù)2014對應的有序數(shù)對為_____

查看答案和解析>>

同步練習冊答案